-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGTEX_subsetting.R
508 lines (329 loc) · 13.7 KB
/
GTEX_subsetting.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
################################################################################
# packages
################################################################################
# statistics
library(matrixStats)
# data manipulation
library(dplyr) # for wrangling data frames
library(data.table) # fread
library(tidyverse) # tidy data
# font issue
windowsFonts("Arial" = windowsFont("Arial"))
################################################################################
# folder
################################################################################
setwd("C:/Users/sabrinai/OneDrive - The University of Melbourne/PHD/Chapter2/2.GTEXRnaSeq")
################################################################################
# about the data and the experiment
################################################################################
# source: https://gtexportal.org/home/datasets
# details on https://gtexportal.org/home/tissueSummaryPage
# data: GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz
# tissue: 55 human tissues
# replicates: none
# libraries: 17382
# sequencing: Illumina TrueSeq HiSeq 2000 and 2500 RNA sequencing to obtain 76bp paired-end reads
# median coverage was ~82M total reads
# aligned to the human genome hg38/GRCh38 human genome using STAR v2.5.3a
# transcripts defined using the the GENCODE 26 transcriptome
################################################################################
# Objective of this code
################################################################################
# splitting the GTEX data into system-specific data sets
######################################################################
# reading metadata
##########################################################################
## header = F to make sure the top row does not become column names
## t separated
meta <- read.csv("Data/GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt",
header = F,
sep = "\t",
quote = "")
colnames(meta)
## has a weird column header labeled V1 to V63
## the second row should be column header
## making the right column header
## this row will become the header
colnames(meta) <- as.character(unlist(meta[1,]))
## removing the header as a row
meta <- meta[-1, ]
##############################################################################
# subset criterion
###############################################################################
# tissues as vectors
cns <- c('Brain - Putamen (basal ganglia)',
'Brain - Nucleus accumbens (basal ganglia)',
'Brain - Caudate (basal ganglia)',
'Brain - Cerebellum',
'Brain - Cerebellar Hemisphere',
'Brain - Anterior cingulate cortex (BA24)',
'Brain - Frontal Cortex (BA9)',
'Brain - Cortex',
'Brain - Hypothalamus',
'Brain - Hippocampus',
'Brain - Amygdala',
'Brain - Substantia nigra',
'Brain - Spinal cord (cervical c-1)',
'Nerve - Tibial') #14
ens <- c('Small Intestine - Terminal Ileum',
'Colon - Sigmoid',
'Colon - Transverse',
'Esophagus - Muscularis',
'Esophagus - Mucosa',
'Esophagus - Gastroesophageal Junction',
'Stomach',
'Minor Salivary Gland',
'Liver',
"Spleen",
"Pancreas") # 11
cv <- c('Artery - Tibial',
'Artery - Coronary',
'Artery - Aorta',
'Heart - Atrial Appendage',
'Heart - Left Ventricle') # 5
endocrine <- c('Pituitary',
'Thyroid',
'Adrenal Gland') # 3
fem_reproductive <- c("Uterus",
"Cervix - Endocervix",
"Fallopian Tube",
"Cervix - Ectocervix",
"Ovary",
"Vagina") # 6
mus_reproductive <- c("Prostate",
"Testis") #2
excretory <- c("Bladder",
"Kidney - Medulla",
"Kidney - Cortex") # 3
adipose <- c("Adipose - Subcutaneous",
"Breast - Mammary Tissue",
"Adipose - Visceral (Omentum)") # 3
skin <- c("Skin - Not Sun Exposed (Suprapubic)",
"Skin - Sun Exposed (Lower leg)") #2
mus <- c("Muscle - Skeletal") #1
resp <- c("Lung") #1
lymphocyte <- c("Cells - EBV-transformed lymphocytes") #1
whole_blood <- c("Whole Blood") #1
fibroblast <- c("Cells - Cultured fibroblasts") # 1
# sample ids of those tissues + RNA seq data
## rnaseq will be the SMTSD %in% tissues I am interested and only RNA seq
## cns
rnaseq_cns <- meta %>%
filter(SMTSD %in% cns, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_cns) # 3261 cns samples
## ens
rnaseq_ens <- meta %>%
filter(SMTSD %in% ens, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_ens) # 3727 ens samples
## cv
rnaseq_cv <- meta %>%
filter(SMTSD %in% cv, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_cv) # 2196 samples
# endocrine
rnaseq_endo <- meta %>%
filter(SMTSD %in% endocrine, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_endo) # 1194
# female repro
rnaseq_fem_repro <- meta %>%
filter(SMTSD %in% fem_reproductive, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_fem_repro) # 506
# male repro
rnaseq_mus_repro <- meta %>%
filter(SMTSD %in% mus_reproductive, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_mus_repro) # 606
# excretory
rnaseq_excre <- meta %>%
filter(SMTSD %in% excretory, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_excre) # 110
# adipose
rnaseq_adi <- meta %>%
filter(SMTSD %in% adipose, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_adi) # 1663
# skin
rnaseq_skin <- meta %>%
filter(SMTSD %in% skin, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_skin) # 1305
# muscle
rnaseq_muscle <- meta %>%
filter(SMTSD %in% mus, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_muscle) # 803
# resp <- c("Lung")
rnaseq_lung <- meta %>%
filter(SMTSD %in% resp, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_lung) # 578
# lymphocyte
rnaseq_lcyte <- meta %>%
filter(SMTSD %in% lymphocyte, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_lcyte) # 174
# whole_blood
rnaseq_blood <- meta %>%
filter(SMTSD %in% whole_blood, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_blood) # 775
# fibroblast
rnaseq_fblast <- meta %>%
filter(SMTSD %in% fibroblast, SMAFRZE == "RNASEQ") %>%
dplyr::select(SAMPID)
dim(rnaseq_fblast) # 504
################################################################################
## reading the GTEX data
###############################################################################
## header false
## fread allows fishing out target columns
## skip the first two rows
## fread function
## warning: no method or default for coercing "character" to "SAMPID"
# cns
read_cns <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_cns),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_cns) #3261
# ens
read_ens <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_ens),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_ens) ## 3727
# cv
read_cv <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_cv),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_cv) # 2196
# endo
read_endo <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_endo),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_endo) # 1194
# repro fem
read_fem_repro <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_fem_repro),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_fem_repro) # 506
# repro mus
read_mus_repro <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_mus_repro),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_mus_repro) # 606
# excre
read_excre <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_excre),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_excre) # 110
# adi
read_adi <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_adi),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_adi) # 1663
# lung
read_lung <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_lung),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_lung) # 578
# muscle
read_muscle <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_muscle),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_muscle) # 803
# skin
read_skin <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_skin),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_skin) # 1307
# lymphocyte
read_lcyte <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_lcyte),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_lcyte) # 174
str(read_lcyte)
# whole blood
read_blood <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_blood),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_blood) # 755
# fibroblast
read_fblast <- fread("Data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct",
select = c("Name","Description", rnaseq_fblast),
stringsAsFactors = F,
header = T,
sep = "\t",
quote = "",
skip = 2)
dim(read_fblast) # 504
# writing csv
write.csv(read_cns, "Data/GTEXCNS.csv", sep = "\t") #cns
write.csv(read_ens, "Data/GTEXENS.csv", sep = "\t") #ens
write.csv(read_cv, "Data/GTEXCV.csv", sep = "\t") # cv
write.csv(read_endo, "Data/GTEXENDO.csv", sep = "\t") # endo
write.csv(read_fem_repro, "Data/GTEXFEM.csv", sep = "\t") # fem
write.csv(read_mus_repro, "Data/GTEXMUS.csv", sep = "\t") # mus
write.csv(read_excre, "Data/GTEXEXCRE.csv", sep = "\t") # excre
write.csv(read_adi, "Data/GTEXADI.csv", sep = "\t") # adi
write.csv(read_muscle, "Data/GTEXMUSCLE.csv", sep = "\t") # muscle
write.csv(read_skin, "Data/GTEXSKIN.csv", sep = "\t") # skin
write.csv(read_lung, "Data/GTEXLUNG.csv", sep = "\t") # lung
write.csv(read_blood, "Data/GTEXBLOOD.csv", sep = "\t") # blood
write.csv(read_lcyte, "Data/GTEXLCYTE.csv", sep = "\t") # lcyte
write.csv(read_fblast, "Data/GTEXFBLAST.csv", sep = "\t") # fibroblast