-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
79 lines (64 loc) · 2.72 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import torch.backends.cudnn as cudnn
import torch
from data.get_data_set import get_data
from PIL import Image
from data.loader_tools import get_standard_transformations
import utils2.misc as misc
import cv2
from configs import get_args_parser
from model.get_model import model_generation
from utils.engine import inference_sliding
from data.facade import PolygonTrans
import matplotlib.pyplot as plt
import numpy as np
import os
def show_single(image, location=None, save=False, name=None):
# show single image
image = np.array(image, dtype=np.uint8)
fig = plt.figure()
plt.imshow(image)
fig.set_size_inches(2048/100.0, 1024/100.0) #输出width*height像素
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.axis('off')
plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0)
plt.margins(0, 0)
if save:
plt.savefig(name, bbox_inches='tight', pad_inches=0)
plt.show()
def main():
# distribution
misc.init_distributed_mode(args)
device = torch.device(args.device)
cudnn.benchmark = True
train_set, val_set, ignore_index = get_data(args)
model = model_generation(args)
model.to(device)
if args.model_name == "Segmenter":
save_name = args.model_name + "_" + args.encoder
else:
save_name = args.model_name
checkpoint = torch.load(args.output_dir + args.dataset + "_" + save_name + ".pt", map_location="cuda:0")
model.load_state_dict(checkpoint, strict=True)
model.eval()
standard_transformations = get_standard_transformations()
img = Image.open(img_path).convert('RGB')
img = img.resize((args.setting_size[1], args.setting_size[0]), Image.BILINEAR)
img = standard_transformations(img).to(device, dtype=torch.float32)
pred, full_pred = inference_sliding(args, model, img.unsqueeze(0))
color_img = PolygonTrans().id2trainId(torch.squeeze(pred, dim=0).cpu().detach().numpy(), select=None)
show_single(color_img, save=True, name="demo/color_mask.png")
color_img = PolygonTrans().id2trainId(torch.squeeze(pred, dim=0).cpu().detach().numpy(), select=2)
show_single(color_img, save=True, name="demo/window_mask.png")
img_name = args.eval_img.split("/")[-1]
color_image = cv2.imread(color_root + img_name)
color_image = cv2.resize(color_image, (2048, 1024))
cv2.imwrite("demo/truth.png", color_image)
if __name__ == '__main__':
os.makedirs('demo/', exist_ok=True)
parser = argparse.ArgumentParser('model training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
img_path = args.eval_img
color_root = "/home/wangbowen/DATA/Facade/translated_data/color_mask/"
main()