-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_fsl.py
84 lines (73 loc) · 3.28 KB
/
train_fsl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from args_setting import *
from model.model_tools import print_param
from model.FSL import FSLSimilarity, SimilarityLoss
import torch
import time
import datetime
import tools.prepare_things as prt
from pathlib import Path
from engine_fsl import train_one_epoch, evaluate
from tools.calculate_tool import MetricLogSimilar
from tools.Adabelif import AdaBelief
from loaders.base_loader import get_dataloader
import numpy as np
def main(args):
device = torch.device(args.device)
sample_info_train = [args.train_episodes, args.n_way, args.n_shot, args.query]
loaders_train = get_dataloader(args, "train", sample=sample_info_train)
sample_info_val = [args.val_episodes, args.n_way, args.n_shot, args.query]
loaders_val = get_dataloader(args, "val", sample=sample_info_val)
criterien = SimilarityLoss(args).to(device)
model = FSLSimilarity(args)
model_name = f"{args.dataset}_{args.base_model}_use_slot_{args.num_slot}checkpoint.pth"
model.to(device)
checkpoint = torch.load(f"{args.output_dir}/" + model_name, map_location=args.device)
model.load_state_dict(checkpoint["model"], strict=False)
print("load pre-model " + model_name + " ready")
print_param(model)
params = [p for p in model.parameters() if p.requires_grad]
output_dir = Path(args.output_dir)
# optimizer = torch.optim.AdamW(params, lr=args.lr)
optimizer = AdaBelief(params, lr=args.lr)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_drop)
print("Start training")
start_time = time.time()
log = MetricLogSimilar(args)
record = log.record
max_acc = 0
for epoch in range(args.start_epoch, args.epochs):
train_one_epoch(model, loaders_train, device, record, epoch, optimizer, criterien)
evaluate(model, loaders_val, device, record, epoch, criterien)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / model_name]
if record["val"]["accm"][epoch-1] > max_acc:
print("get higher acc save current model")
max_acc = record["val"]["accm"][epoch-1]
for checkpoint_path in checkpoint_paths:
prt.save_on_master({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log.print_metric()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('model training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
args.slot_base_train = False
args.double = False
args.fsl = True
if args.random:
selection = np.random.randint(0, args.num_classes, args.num_slot)
else:
selection = np.arange(0, args.num_classes, args.interval)
print(selection)
args.num_slot = len(selection)
model_name = (f"{args.dataset}_{args.base_model}_slot{args.num_slot}_" + 'fsl_checkpoint.pth')
print("patterns num: ", args.num_slot)
main(args)