-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathextra_train.py
272 lines (232 loc) · 9.76 KB
/
extra_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from loaders.get_loader import loader_generation
from configs import parser
import sklearn.cluster as cluster
from sklearn.decomposition import PCA
from termcolor import colored
import torch.nn.functional as F
import torch
import os
import pickle
import numpy as np
from model.reconstruct.model_main import MNISTSimple
from model.retrieval.model_main import MainModel
from utils.record import AverageMeter, ProgressMeter, show
from utils.tools import cal_acc, predict_hash_code, mean_average_precision
import torch.nn as nn
def get_model():
if args.dataset == "MNIST":
model = MNISTSimple()
else:
model = MainModel(args)
return model
class FC(nn.Module):
def __init__(self, args, hidden_dim):
super(FC, self).__init__()
self.fc = nn.Linear(hidden_dim, args.num_classes)
self.temp = nn.Parameter(torch.randn(1))
def forward(self, x):
x = torch.tanh(x * torch.abs(self.temp))
pred = self.fc(x)
return pred
def engine_train(args, model, device, loader, optimizer, epoch):
cls_loss = AverageMeter('Cls', ':.4')
pred_acces = AverageMeter('Acc', ':.4')
show_items = [pred_acces, cls_loss]
progress = ProgressMeter(len(loader),
show_items,
prefix="Epoch: [{}]".format(epoch))
model.train()
for batch_idx, (data, label) in enumerate(loader):
data, label = data.to(device, dtype=torch.float32), label.to(device, dtype=torch.int64)
pred, features = model(data)
if args.dataset != "matplot":
pred = F.log_softmax(pred, dim=-1)
loss_pred = F.nll_loss(pred, label)
acc = cal_acc(pred, label, False)
else:
pred = F.sigmoid(pred)
loss_pred = F.binary_cross_entropy(pred, label.float())
acc = torch.eq(pred.round(), label).sum().float().item() / pred.shape[0] / pred.shape[1]
pred_acces.update(acc)
cls_loss.update(loss_pred)
loss_total = loss_pred
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
if batch_idx % 5 == 0:
progress.display(batch_idx)
@torch.no_grad()
def test(args, model, test_loader, device):
model.eval()
record = 0.0
for batch_idx, (data, label) in enumerate(test_loader):
data, label = data.to(device, dtype=torch.float32), label.to(device, dtype=torch.int64)
pred, features = model(data)
if args.dataset != "matplot":
pred = F.log_softmax(pred, dim=-1)
acc = cal_acc(pred, label, False)
else:
pred = F.sigmoid(pred)
acc = torch.eq(pred.round(), label).sum().float().item() / pred.shape[0] / pred.shape[1]
record += acc
ACC = record/len(test_loader)
print("ACC:", record/len(test_loader))
return ACC
class PreTraining():
def __init__(self, model):
self.model = model
params = [p for p in self.model.parameters() if p.requires_grad]
self.opt = torch.optim.AdamW(params, lr=args.lr)
self.model.to(device)
def main(self):
acc_max = 0
for i in range(args.epoch):
print(colored('Epoch %d/%d' % (i + 1, args.epoch), 'yellow'))
print(colored('-' * 15, 'yellow'))
engine_train(args, self.model, device, train_loader1, self.opt, i)
print("start evaluation")
acc = test(args, self.model, val_loader, device)
if acc > acc_max:
acc_max = acc
print("get better result, save current model.")
torch.save(self.model.state_dict(), os.path.join(args.output_dir,
f"{args.dataset}_{args.base_model}_cls{args.num_classes}_extra.pt"))
class CalCenter():
def __init__(self, model):
self.model = model
checkpoint = torch.load(os.path.join(args.output_dir, f"{args.dataset}_{args.base_model}_cls{args.num_classes}_extra.pt"),
map_location="cuda:0")
self.model.load_state_dict(checkpoint, strict=True)
self.model.eval()
self.model.to(device)
def kmeans(self, acts):
km = cluster.KMeans(n_clusters, random_state=2)
d = km.fit(acts)
centers = km.cluster_centers_
with open("pickle_file/" + args.dataset + str(n_clusters) + "_kmeans.pickle", "wb") as file:
pickle.dump({"center": centers}, file)
file.close()
print("kmeans finished")
def pca(self, acts_train):
pca = PCA(n_components=n_clusters)
x_train = pca.fit(acts_train)
axis = pca.components_
with open("pickle_file/" + args.dataset + str(n_clusters) + "_pca.pickle", "wb") as file:
pickle.dump({"axis": axis}, file)
file.close()
print("pca finished")
def get_acts(self, loader):
output = []
for batch_idx, (data, label) in enumerate(loader):
data, label = data.to(device, dtype=torch.float32), label.to(device, dtype=torch.int64)
_, features = self.model(data)
features = features.permute([0, 2, 3, 1]).reshape(-1, size * size, dim)
output.append(features.cpu().detach().numpy())
output = np.concatenate(output, 0)
output = output.reshape(-1, dim)
return output
def main(self):
acts = self.get_acts(train_loader2)
if method == "kmeans":
self.kmeans(acts)
elif method == "pca":
self.pca(acts)
class Train():
def __init__(self, model, fc):
self.model = model
checkpoint = torch.load(
os.path.join(args.output_dir, f"{args.dataset}_{args.base_model}_cls{args.num_classes}_extra.pt"),
map_location="cuda:0")
self.model.load_state_dict(checkpoint, strict=True)
self.model.eval()
self.model.to(device)
self.fc = fc
params = [p for p in self.fc.parameters() if p.requires_grad]
self.opt = torch.optim.AdamW(params, lr=args.lr)
self.fc.to(device)
def train_(self):
if method == "kmeans":
with open("pickle_file/" + args.dataset + str(n_clusters) + "_kmeans.pickle", "rb") as file:
center = pickle.load(file)["center"]
else:
with open("pickle_file/" + args.dataset + str(n_clusters) + "_pca.pickle", "rb") as file:
center = pickle.load(file)["axis"]
center = torch.from_numpy(center).to(device)
acc_max = 0
for i in range(args.epoch):
print("epoch: ", str(i))
self.fc.train()
i = 0
for item in [train_loader1, val_loader]:
acc_ = 0
for batch_idx, (data, label) in enumerate(item):
data, label = data.to(device, dtype=torch.float32), label.to(device, dtype=torch.int64)
_, features = self.model(data)
features = features.permute([0, 2, 3, 1]).reshape(-1, size * size, dim)
if method == "kmeans":
active = self.kmeans_d(center, features)
else:
active = self.pca_d(center, features)
pred = self.fc(active)
if args.dataset != "matplot":
pred = F.log_softmax(pred, dim=-1)
loss_pred = F.nll_loss(pred, label)
acc = cal_acc(pred, label, False)
else:
pred = F.sigmoid(pred)
loss_pred = F.binary_cross_entropy(pred, label.float())
acc = torch.eq(pred.round(), label).sum().float().item() / pred.shape[0] / pred.shape[1]
loss_total = loss_pred
self.opt.zero_grad()
loss_total.backward()
self.opt.step()
acc_ += acc
c_acc = acc_ / len(item)
if i == 1:
if c_acc > acc_max:
acc_max = c_acc
print(c_acc)
print("get better result, save current model.")
torch.save(self.model.state_dict(), os.path.join(args.output_dir,
f"{args.dataset}_{args.base_model}_cls{args.num_classes}_extra.pt"))
i += 1
def kmeans_d(self, center, features):
d = ((features[:, :, None, :] - center[None, None, :, :]) ** 2).mean(-1)
d = torch.exp(-d)
d = torch.div(d, d.sum(-1).expand_as(d.permute([2, 0, 1])).permute([1, 2, 0]))
active = d.sum(1)
return active
def pca_d(self, axis, features):
n, l, c = features.shape
mean = torch.mean(features, dim=(0, 1)).expand(n, l, c)
var = torch.var(features, dim=(0, 1)).expand(n, l, c)
f = (features - mean) / var
d = torch.abs((f[:, :, None, :] * axis[None, None, :, :]).sum(-1))
d = torch.div(d, d.sum(-1).expand_as(d.permute([2, 0, 1])).permute([1, 2, 0]))
active = d.sum(1)
return active
if __name__ == '__main__':
os.makedirs('pickle_file/', exist_ok=True)
args = parser.parse_args()
args.dataset = "ImageNet"
method = "pca"
args.pre_train = True
args.epoch = 50
n_clusters = 50
args.num_classes = 200
args.base_model = "resnet18"
dim = 512
size = 7
mode = "train"
model_bone = get_model()
device = torch.device(args.device)
# CUDNN
torch.backends.cudnn.benchmark = True
train_loader1, train_loader2, val_loader = loader_generation(args)
if mode == "pre_training":
PreTraining(model_bone).main()
elif mode == "cal_center":
CalCenter(model_bone).main()
elif mode == "train":
fc_ = FC(args, n_clusters)
Train(model_bone, fc_).train_()