forked from tyaSHEN/HLEdecom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNotes for HLE Decomposition.rmd
739 lines (541 loc) · 29.7 KB
/
Notes for HLE Decomposition.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
---
title: "Notes for HLE Decomposition"
author: "Wanying Ling"
date: "`r Sys.Date()`"
output:
word_document: default
html_document: default
pdf_document: default
---
This is a code note for the decomposition approach to healthy life expectancy based on multistate life tables (Shen et.al, [*2023*](https://doi.org/10.1215/00703370-11058373)).
```{r Setup,message=FALSE, warning=FALSE, cache=TRUE}
# Tidy up the workspace
rm(list=ls())
options(scipen = 100)
# import packages
library(abind)
library(tidyverse)
library(doParallel)
```
## Dataset
The dataset **BASELINE.csv** includes the initial health structure of the population. It contains four variables:
- **state**: health state (with 1 and 2, healthy and unhealthy respectively)
- **ragender**: gender
- **pro**: proportion of the population in that health state (they are rescaled to 1 by sex and iteration to calculated the HLE for male and female separately)
- **iter**: bootstrap iteration number
```{r ImportINI, message=FALSE, warning=FALSE, cache=TRUE}
# Setting the working path
setwd("D:/Research/Research_2023/1-HLEdecom")
# import datasets
INI = read_csv(paste0("Raw_data/BASELINE.csv"))
# variables
names(INI)
```
The dataset **PROB.csv** includes the transition probabilities by age. It contains seven variables:
- **pre_state**: the initial state
- **ragender**: gender
- **age**: age
- **iter**: bootstrap iteration number
- **A**: probability to "Healthy" given the initial state
- **L**: probability to "Unhealthy" given the initial state
- **H**: probability to "Death" given the initial state
```{r ImportTRANS, message=FALSE, warning=FALSE, cache=TRUE}
# Setting the working path
setwd("D:/Research/Research_2023/1-HLEdecom")
# import datasets
TRANS = read_csv(paste0("Raw_data/PROB.csv"))
# variables
names(TRANS)
```
## Table 1 - Panel A : Baseline population health structure(Table 1 - Panel A)
$l_\alpha^{i i}$ are the initial proportions of people at state $i$ at the radix age $\alpha$ of the multistate life table. The diagonal in this matrix adds up to $100 \%$ of the initial population, so $\sum_{i=1}^n l_\alpha^{i i}=1$ when computing the population-based multistate life expectancy.
$$
\mathbf{l}_\alpha=\left[\begin{array}{cccc}
l_\alpha^{11} & 0 & \cdots & 0 \\
0 & l_\alpha^{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & l_\alpha^{n n}
\end{array}\right]
$$ Next, let's calculate $\mathbf{l}_\alpha$ for the female population, which we denote by $\mathbf{l}_0^{female}$.
### Function 1: l0_func
**l0_func** : Function for obtaining baseline population health structure.
```{r l0_func, message=FALSE, warning=FALSE, cache=TRUE}
# Function for obtain baseline population health structure
l0_func <- function(data, gender,iteration){
ini = data %>% filter(ragender == gender,iter==iteration)%>% ungroup()%>%
arrange(state) %>% pull(pro)
## standardise them to to generate l0
t= (ini[1]+ini[2])
ini[1] = ini[1]/t
ini[2] = ini[2]/t
## l0_1 denotes the initial proportions of the population
l0 = matrix(c(ini[1],0,0,
0,ini[2],0,
0,0,0),nrow=3,byrow = T)
return(l0)
}
```
### Function 2: lx_func
**lx_func** : Function for obtaining $l_x$
```{r lx_func, message=FALSE, warning=FALSE, cache=TRUE}
lx_func <- function(trans, init){
l = list(init)
for (a in 1:(length(trans))) {
lx = l[[a]] %*% trans[[a]]
l[[length(l)+1]]=lx
}
return(l)
}
```
Calculating results for 500 iterations to generate confidence intervals.
```{r , message=FALSE, warning=FALSE, cache=TRUE}
## Using multiple cores makes computing faster
registerDoParallel(min(detectCores(),12))
## Calculating results for 500 iterations to generate confidence intervals
Table1PanelA = foreach(i=1:500,.packages = c("tidyverse")) %dopar% {
## For female
l0_female = l0_func(data = INI, gender = 2, iteration = i)
## For male
l0_male = l0_func(data = INI, gender = 1, iteration = i)
res_l0 = list(l0_female=l0_female,l0_male=l0_male)
res_l0
}
stopImplicitCluster()
```
Output Baseline population health structure, i.e., the Panel A in Table 1.
```{r , message=FALSE, warning=FALSE, cache=TRUE}
## Baseline population health structure(Table 1 - Panel A - female)
print("Baseline population health structure(Table 1 - Panel A - female)")
l0_female = Table1PanelA[[1]][["l0_female"]]
for (a in 2:500) {
l0_female = abind(l0_female,Table1PanelA[[a]][["l0_female"]],along = 3)
}
round(colSums(Table1PanelA[[1]][["l0_female"]]),2)[1:2] ## estimate
print("95% confidence interval:")
round(apply(apply(l0_female,c(2,3),sum),c(1),quantile,0.025),2)[1:2] ## Lower 95% confidence interval
round(apply(apply(l0_female,c(2,3),sum),c(1),quantile,0.975),2)[1:2] ## Upper 95% confidence interval
## Baseline population health structure(Table 1 - Panel A - male)
print("Baseline population health structure(Table 1 - Panel A - male)")
l0_male = Table1PanelA[[1]][["l0_male"]]
for (a in 2:500) {
l0_male = abind(l0_male,Table1PanelA[[a]][["l0_male"]],along = 3)
}
round(colSums(Table1PanelA[[1]][["l0_male"]]),2)[1:2] ## estimate
print("95% confidence interval:")
round(apply(apply(l0_male,c(2,3),sum),c(1),quantile,0.025),2)[1:2] ## Lower 95% confidence interval
round(apply(apply(l0_male,c(2,3),sum),c(1),quantile,0.975),2)[1:2] ## Upper 95% confidence interval
```
## Table 1 - Panel B : Status Based HLE and ULE(Table 1 - Panel B)
Panel B ofTable 1 presents the statusbased HLE and ULE at age 55, where the expectancies are not weighted by the initial population structure from panel A. Each row represents expected years spent in different health states separately by initial disability status.
$${ }_{\beta-x}\mathbb{e}_x=\frac{\mathbb{I}}{2}+\sum_{h=x}^{\beta-2}\left(\prod_{k=x}^h \mathbf{P}_k\right)+\frac{\prod_{k=x}^{\beta-1} \mathbf{P}_k}{2}$$
where $\mathbb{I}$ is the identity matrix and ${ }_{\beta-x} \mathbb{e}_x$ is the status-based life expectancy between age $x$ and $\beta$. The latter quantity is similar to the population-based life expectancy, ${ }_{\beta-\alpha} \mathbf{e}_\alpha$, in Eq. (2), but without the product of the initial population structure, $\mathbf{l}_\alpha$.
For a multistate life table with $n$ states, $1,2, \ldots, n$, the matrix of transition probabilities at a given age $x$ is an $n$-by- $n$ square matrix.
$$
\mathbf{P}_x=\left[\begin{array}{cccc}
p_x^{11} & p_x^{12} & \cdots & p_x^{1 n} \\
p_x^{21} & p_x^{22} & \cdots & p_x^{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
p_x^{n 1} & p_x^{n 2} & \cdots & p_x^{n n}
\end{array}\right]
$$
### Function 3: P_func
**P_func** : Function for obtaining the matrix of transition probabilities.
```{r P_func, message=FALSE, warning=FALSE, cache=TRUE}
# Function for obtaining the matrix of transition probabilities.
P_func <- function(data, gender,iteration){
## import transition probabilities
# filter (): select the part of the data which ragender == 1 and iter==i;
# pivot_longer() : convert the wide data of columns 5 to 7 to long data,
# with the column name as the value of the "state" variable and the value as the value of the "prob" variable.
trans = data %>% filter(ragender == gender,iter==iteration) %>%
pivot_longer(c(5:7),names_to = "state",values_to = "prob")
# Add transition probabilities for death-related states
H = crossing(pre_state= "H",state = c("A","L","H"),ragender= unique(trans$ragender),
age = unique(trans$age),iter = i,prob = 0)
H = H %>% mutate(prob = ifelse(state == "H"& pre_state=="H", 1, prob))
# Overlay data in existing rows
trans = bind_rows(trans,H)
# Extracting the pre-state, state, age and probability
trans$pre_state = factor(trans$pre_state,levels = c("A","L","H"))
trans$state = factor(trans$state,levels = c("A","L","H"))
trans = xtabs(prob ~ pre_state+state+age,data = trans)
# converting the transfer probabilities of the male population into a list format;
# P_x denotes the matrix of transition probabilities for females population
P_x = lapply(seq(dim(trans)[3]), function(x) trans[ , , x])
# standardise the matrix if applicable
P_x = lapply(P_x, function(X){
X<- X/rowSums(X)
X
})
return(P_x)
}
```
### Function 4: All_P_func
**All_P_func** : Function for obtaining \$ \prod\_{k=x}\^{\beta-1} \mathbf{P}\_k}\$.
```{r All_P_func, message=FALSE, warning=FALSE, cache=TRUE}
# Function for obtaining $ \prod_{k=x}^{\beta-1} \mathbf{P}_k}$.
All_P_func <- function(P_x){
All_P = vector(mode = "list",length = length(P_x))
for (i in 1:(length(P_x)-1)) {
All_P[[i]] = list(P_x[[i]])
for (j in i:(length(P_x)-1)) {
tem = All_P[[i]][[length(All_P[[i]])]] %*% P_x[[j+1]]
All_P[[i]][[length(All_P[[i]])+1]] = tem
}
All_P[[i]][[length(All_P[[i]])]] = All_P[[i]][[length(All_P[[i]])]]/2
}
All_P[[(length(P_x))]] = list(P_x[[(length(P_x))]]/2)
return(All_P)
}
```
### Function 5: SUM_func
**SUM_func** : Function for obtaining $\mathbb{e}_x$ (StatusBasedHLEandULE).
```{r SUM_func, message=FALSE, warning=FALSE, cache=TRUE}
# Function for obtaining $ \prod_{k=x}^{\beta-1} \mathbf{P}_k}$.
SUM_func <- function(dim, All_P){
I= diag(dim) ## it contains 3 status
SUM = list()
for(i in 1:length(All_P)){
SUM[[i]]= Reduce(`+`, All_P[[i]]) + I/2
}
for(i in 2:length(SUM)){
SUM[[i]]= SUM[[i]] + I/2
}
SUM[[length(SUM)+1]]=I/2
return(SUM)
}
```
Calculating results for 500 iterations to generate confidence intervals.
```{r ,message=FALSE, warning=FALSE, cache=TRUE}
## Using multiple cores makes computing faster
registerDoParallel(min(detectCores(),12))
## Calculating results for 500 iterations to generate confidence intervals
Table1PanelB = foreach(i=1:500,.packages = c("tidyverse")) %dopar% {
## For female
P_female = P_func (data=TRANS, gender=2,iteration=i)
## Obtaining \prod_{k=x}^{\beta-1} \mathbf{P}_k}
All_P_female = All_P_func(P_x=P_female)
# StatusBasedHLEandULE
SUM_female = SUM_func(dim=3, All_P=All_P_female)
## For male
P_male = P_func (data=TRANS, gender=1,iteration=i)
## Obtaining \prod_{k=x}^{\beta-1} \mathbf{P}_k}
All_P_male = All_P_func(P_x=P_male)
# StatusBasedHLEandULE
SUM_male = SUM_func(dim=3, All_P=All_P_male)
SUM = list(SUM_female= SUM_female, SUM_male=SUM_male)
}
stopImplicitCluster()
```
Output StatusBasedHLEandULE, i.e., the Panel B in Table 1.
```{r , message=FALSE, warning=FALSE, cache=TRUE}
## Baseline population health structure(Table 1 - Panel B - female)
print("StatusBasedHLEandULE(Table 1 - Panel B - female)")
HLE_status_female = Table1PanelB[[1]][["SUM_female"]][[1]]
for (a in 2:500) {
HLE_status_female = abind(HLE_status_female,Table1PanelB[[a]][["SUM_female"]][[1]],along = 3)
}
round(Table1PanelB[[1]][["SUM_female"]][[1]],2)[1:2,1:2]## estimate
print("95% confidence interval:")
round(apply(HLE_status_female,c(1,2),quantile,0.025),2)[1:2,1:2]## Lower 95% confidence interval
round(apply(HLE_status_female,c(1,2),quantile,0.975),2)[1:2,1:2]## Upper 95% confidence interval
## Baseline population health structure(Table 1 - Panel B - male)
print("StatusBasedHLEandULE(Table 1 - Panel B - male)")
HLE_status_male = Table1PanelB[[1]][["SUM_male"]][[1]]
for (a in 2:500) {
HLE_status_male = abind(HLE_status_male,Table1PanelB[[a]][["SUM_male"]][[1]],along = 3)
}
round(Table1PanelB[[1]][["SUM_male"]][[1]],2)[1:2,1:2]## estimate
print("95% confidence interval:")
round(apply(HLE_status_male,c(1,2),quantile,0.025),2)[1:2,1:2]## Lower 95% confidence interval
round(apply(HLE_status_male,c(1,2),quantile,0.975),2)[1:2,1:2]## Upper 95% confidence interval
```
## Table 1 - Panel C : Population Based HLE and ULE
The expectancy in multistate life table from age $\alpha$ to $\beta$ can be represented as
$$
{}_{\beta-\alpha} \mathbf{e}_\alpha==\left[\begin{array}{cccc}
{}_{\beta-\alpha} e_\alpha^{11} & {}_{\beta-\alpha} e_\alpha^{12} & \cdots & {}_{\beta-\alpha} e_\alpha^{1 n} \\
{}_{\beta-\alpha} e_\alpha^{21} & {}_{\beta-\alpha} e_\alpha^{22} & \cdots & {}_{\beta-\alpha} e_\alpha^{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
{}_{\beta-\alpha} e_\alpha^{n 1} & {}_{\beta-\alpha} e_\alpha^{n 2} & \cdots & {}_{\beta-\alpha} e_\alpha^{n n}
\end{array}\right]
$$
where $_{\beta-\alpha} e_\alpha^{i j}$ corresponds to the expected contribution to population-based life expectancy in state $j$ from age $\alpha$ to $\beta$ for individuals in initial state $i$ at exact age $\alpha$,weighted by the initial population structure.
As in the single-decrement life expectancy, the population-based multistate life expectancy, ${ }_{\beta-\alpha} \mathbf{e}_\alpha$, is calculated in terms of the survival matrix as $$
{ }_{\beta-\alpha} \mathbf{e}_\alpha=\frac{\mathbf{l}_\alpha}{2}+\sum_{x=\alpha+1}^{\beta-1} \mathbf{l}_x+\frac{\mathbf{l}_\beta}{2},
$$ where the $\mathbf{l}_\beta$ is the survival matrix of the last age and $\mathbf{l}_x$ are the ones between ages $\alpha$ and $\beta$.
And the survival matrix $\mathbf{l}_x$ can be also calculated based on the transition probabilities as
$$
\mathbf{l}_x=\mathbf{l}_{x-1} \mathbf{P}_{x-1}=\mathbf{l}_\alpha \prod_{k=\alpha}^{x-1} \mathbf{P}_k,
$$ where the product operator $\prod_{k=\alpha}^{x-1} \mathbf{P}_k$ invokes matrix products.
### Function 6: HLE_func
**HLE_func** : Function for obtaining $e_x$ (PopualtionBased LE,HLEandULE).
```{r HLE_func, message=FALSE, warning=FALSE, cache=TRUE}
# Function for obtaining $ \prod_{k=x}^{\beta-1} \mathbf{P}_k}$.
HLE_func <- function(trans, init){
l = list(init)
e = init*0
for (a in 1:(length(trans))) {
lx = l[[a]] %*% trans[[a]]
l[[length(l)+1]]=lx
Lx = (l[[a]]+l[[a+1]])/2
e = e+Lx
}
return(e)
}
```
Calculating results for 500 iterations to generate confidence intervals.
```{r ,message=FALSE, warning=FALSE, cache=TRUE}
registerDoParallel(min(detectCores(),12))
Table1PanelC = foreach(i=1:500,.packages = c("tidyverse")) %dopar% {
## For female
l0_female = l0_func(data = INI, gender = 2, iteration = i)
P_female = P_func (data=TRANS, gender=2,iteration=i)
e_female = HLE_func(trans=P_female, init=l0_female)
## For male
l0_male = l0_func(data = INI, gender = 1, iteration = i)
P_male = P_func (data=TRANS, gender=1,iteration=i)
e_male = HLE_func(trans=P_male, init=l0_male)
e = list (e_female=e_female,e_male=e_male)
}
stopImplicitCluster()
```
Output PopulationBasedHLEandULE, i.e., the Panel C in Table 1.
```{r , message=FALSE, warning=FALSE, cache=TRUE}
## Baseline population health structure(Table 1 - Panel C - female)
print("PopulationBasedHLEandULE(Table 1 - Panel C - female)")
HLE_popu_female = Table1PanelC[[1]][["e_female"]]
for (a in 2:500) {
HLE_popu_female = abind(HLE_popu_female,Table1PanelC[[a]][["e_female"]],along = 3)
}
round(Table1PanelC[[1]][["e_female"]],2)[1:2,1:2]## estimate
round(colSums(Table1PanelC[[1]][["e_female"]]),2) ## total
print("95% confidence interval:")
round(apply(apply(HLE_popu_female,c(2,3),sum),c(1),quantile,0.975),2)[1:2]## Lower 95% confidence interval
round(apply(apply(HLE_popu_female,c(2,3),sum),c(1),quantile,0.975),2)[1:2]## Upper 95% confidence interval
## Baseline population health structure(Table 1 - Panel C - male)
print("PopulationBasedHLEandULE(Table 1 - Panel C - male)")
HLE_popu_male = Table1PanelC[[1]][["e_male"]]
for (a in 2:500) {
HLE_popu_male = abind(HLE_popu_male ,Table1PanelC[[a]][["e_male"]],along = 3)
}
round(Table1PanelC[[1]][["e_male"]],2)[1:2,1:2]## estimate
round(colSums(Table1PanelC[[1]][["e_male"]]),2) ## total
print("95% confidence interval:")
round(apply(apply(HLE_popu_male,c(2,3),sum),c(1),quantile,0.025),2)[1:2]## Lower 95% confidence interval
round(apply(apply(HLE_popu_male,c(2,3),sum),c(1),quantile,0.975),2)[1:2]## Upper 95% confidence interval
```
## Table 2 - Panel A: Difference in Expectancies
The difference in expectancies $_{\beta-\alpha} \dot{\mathbf{e}}_\alpha$ can be decomposed into two components, from the initial population $\dot{\mathbf{l}}_\alpha \cdot{ }_{\beta-\alpha} \mathbb{e}_\alpha$ and from the transitions $\sum_{x=\alpha}^{\beta-1} \mathbf{l}_x \dot{\mathbf{P}}_x\left(\frac{\mathbb{I}}{2}+{ }_{\beta-x-1} \mathbb{e}_{x+1}\right)$.
$$
\begin{aligned}
&_{\beta-\alpha} \dot{\mathbf{e}}_\alpha=\frac{\dot{\mathbf{l}}_\alpha}{2}+\sum_{x=\alpha+1}^{\beta-1} \dot{\mathbf{l}}_x+\frac{\dot{\mathbf{l}}_\beta}{2} \\
& =\frac{\dot{\mathbf{l}}_\alpha}{2}+\sum_{x=\alpha+1}^{\beta-1}\left[\dot{\mathbf{l}}_\alpha \prod_{k=\alpha}^{x-1} \mathbf{P}_k+\sum_{h=\alpha}^{x-1}\left(\mathbf{l}_h \dot{\mathbf{P}}_h \prod_{k=h+1}^{x-1} \mathbf{P}_k\right)\right] +\frac{\dot{\mathbf{l}}_\alpha \prod_{k=\alpha}^{\beta-1} \mathbf{P}_k+\sum_{h=\alpha}^{\beta-1}\left(\mathbf{l}_h \dot{\mathbf{P}}_h \prod_{k=h+1}^{\beta-1} \mathbf{P}_k\right)}{2} \\
& =\frac{\dot{\mathbf{l}}_\alpha}{2}+\sum_{x=\alpha+1}^{\beta-1}\left(\dot{\mathbf{l}}_\alpha \prod_{k=\alpha}^{x-1} \mathbf{P}_k\right)+\frac{\dot{\mathbf{l}}_\alpha \prod_{k=\alpha}^{\beta-1} \mathbf{P}_k}{2}+\sum_{x=\alpha+1}^{\beta-1} \sum_{h=\alpha}^{x-1}\left(\mathbf{1}_h \dot{\mathbf{P}}_h \prod_{k=h+1}^{x-1} \mathbf{P}_k\right) +\frac{\sum_{h=\alpha}^{\beta-1}\left(\mathbf{l}_h \dot{\mathbf{P}}_h \prod_{k=h+1}^{\beta-1} \mathbf{P}_k\right)}{2} \\
& =\dot{\mathbf{l}}_\alpha\left(\frac{\mathbb{I}}{2}+\mathbf{P}_\alpha+\mathbf{P}_\alpha \mathbf{P}_{\alpha+1}+\cdots+\mathbf{P}_\alpha \mathbf{P}_{\alpha+1} \ldots \mathbf{P}_{\beta-2}+\frac{\mathbf{P}_\alpha \mathbf{P}_{\alpha+1} \ldots \mathbf{P}_{\beta-1}}{2}\right) \\
& +\mathbf{l}_\alpha \dot{\mathbf{P}}_\alpha\left(\mathbb{I}+\mathbf{P}_{\alpha+1}+\mathbf{P}_{\alpha+1} \mathbf{P}_{\alpha+2}+\cdots+\mathbf{P}_{\alpha+1} \mathbf{P}_{\alpha+2} \ldots \mathbf{P}_{\beta-2}+\frac{\mathbf{P}_{\alpha+1} \mathbf{P}_{\alpha+2} \ldots \mathbf{P}_{\beta-1}}{2}\right) \\
& + \mathbf{l}_{\alpha+1} \dot{\mathbf{P}}_{\alpha+1}\left(\mathbb{I}+\mathbf{P}_{\alpha+2}+\mathbf{P}_{\alpha+2} \mathbf{P}_{\alpha+3}+\cdots+\mathbf{P}_{\alpha+2} \mathbf{P}_{\alpha+3} \cdots \mathbf{P}_{\beta-2}\right. \left.+\frac{\mathbf{P}_{\alpha+2} \mathbf{P}_{\alpha+3} \cdots \mathbf{P}_{\beta-1}}{2}\right)+\cdots \\
&+\mathbf{l}_{\beta-2} \dot{\mathbf{P}}_{\beta-2}\left(\mathbb{I}+\frac{\mathbf{P}_{\beta-1}}{2}\right)+\mathbf{l}_{\beta-1} \dot{\mathbf{P}}_{\beta-1}\left(\frac{\mathbb{I}}{2}\right) \\
& =\dot{\mathbf{l}}_\alpha\left(_{\beta-\alpha}\mathbb{e}_\alpha\right)+\mathbf{l}_\alpha \dot{\mathbf{P}}_\alpha\left(\frac{\mathbb{I}}{2}+{ }_{\beta-\alpha-1} \mathbb{e}_{\alpha+1}\right)+ \mathbf{l}_{\alpha+1} \dot{\mathbf{P}}_{\alpha+1}\left(\frac{\mathbb{I}}{2}+{ }_{\beta-\alpha-2} \mathbb{e}_{\alpha+2}\right)+\cdots \\
&+\mathbf{l}_{\beta-2} \dot{\mathbf{P}}_{\beta-2}\left(\frac{\mathbb{I}}{2}+{ }_1 \mathbb{e}_{\beta-1}\right)+\mathbf{l}_{\beta-1} \dot{\mathbf{P}}_{\beta-1}\left(\frac{\mathbb{I}}{2}+{ }_0 \mathbb{e}_\beta\right) \\
& =\dot{\mathbf{l}}_\alpha \cdot{ }_{\beta-\alpha} \mathbb{e}_\alpha+\sum_{x=\alpha}^{\beta-1} \mathbf{l}_x \dot{\mathbf{P}}_x\left(\frac{\mathbb{I}}{2}+{ }_{\beta-x-1} \mathbb{e}_{x+1}\right) \\
&
\end{aligned}
$$
```{r , message=FALSE, warning=FALSE, cache=TRUE}
yeard = 1
registerDoParallel(min(detectCores(),12))
Table2PanelA = foreach(i=1:500,.packages = c("tidyverse")) %dopar% {
## For female
l0_female = l0_func(data = INI, gender = 2, iteration = i)
P_female = P_func (data=TRANS, gender=2,iteration=i)
e_female = HLE_func(trans=P_female, init=l0_female)
## For male
l0_male = l0_func(data = INI, gender = 1, iteration = i)
P_male = P_func (data=TRANS, gender=1,iteration=i)
e_male = HLE_func(trans=P_male, init=l0_male)
diff_e = (e_female-e_male)/yeard
diff_e
}
stopImplicitCluster()
```
Output Difference in Expectancies, i.e., the Panel A in Table 2.
```{r, message=FALSE, warning=FALSE, cache=TRUE}
diff_e = Table2PanelA[[1]]
for (a in 2:500) {
diff_e = abind(diff_e,Table2PanelA[[a]],along = 3)
}
print("Difference in Expectancies (Panel A in Table 2)")
round(Table2PanelA[[1]],2)[1:2,1:2]
round(colSums(Table2PanelA[[1]]),3)[1:2]
print("95% confidence interval:")
round(apply(apply(diff_e,c(2,3),sum),c(1),quantile,0.025),2)[1:2]
round(apply(apply(diff_e,c(2,3),sum),c(1),quantile,0.975),2)[1:2]
```
## Table 2 - Panel B: From Initial Population
### Function 7: Decom_func
**Decom_func** : Function for obtaining component from the initial population $\dot{\mathbf{l}}_\alpha \cdot{ }_{\beta-\alpha} \mathbb{e}_\alpha$.
```{r Decom_func, message=FALSE, warning=FALSE, cache=TRUE}
# Function for obtaining component from the initial population $\dot{\mathbf{l}}_\alpha \cdot{ }_{\beta-\alpha} \mathbb{e}_\alpha$.
Decom_func <- function(diff_l,diff_P,mean_l,SUM){
DOT = list(diff_l[[1]])
for (i in 2:length(SUM)) {
DOT[[i]] = mean_l[[i-1]] %*% diff_P[[i-1]]
}
DecomINI = Map('%*%',DOT,SUM)
return(DecomINI)
}
```
Calculating results for 500 iterations to generate confidence intervals.
```{r , message=FALSE, warning=FALSE, cache=TRUE}
yeard = 1
registerDoParallel(min(detectCores(),12))
Table2PanelBC = foreach(i=1:500,.packages = c("tidyverse")) %dopar% {
## For female
l0_female = l0_func(data = INI, gender = 2, iteration = i)
P_female = P_func (data=TRANS, gender=2,iteration=i)
l_female = lx_func(P_female,l0_female)
## For male
l0_male = l0_func(data = INI, gender = 1, iteration = i)
P_male = P_func (data=TRANS, gender=1,iteration=i)
l_male = lx_func(P_male,l0_male)
diff_l = list()
mean_l = list()
for (i in 1:length(l_male)) {
diff_l[[i]] = (l_female[[i]]-l_male[[i]])/yeard
mean_l[[i]] = (l_female[[i]]+l_male[[i]])/2
}
diff_P = list()
mean_P = list()
for (i in 1:length(P_male)) {
diff_P[[i]] = (P_female[[i]]-P_male[[i]])/yeard
mean_P[[i]] = (P_female[[i]]+P_male[[i]])/2
}
All_P= All_P_func(P_x=mean_P)
SUM = SUM_func(dim=3, All_P=All_P)
Decom = Decom_func(diff_l=diff_l,diff_P=diff_P,mean_l,SUM=SUM)
Decom
}
stopImplicitCluster()
```
Output component from the initial population $\dot{\mathbf{l}}_\alpha \cdot{ }_{\beta-\alpha} \mathbb{e}_\alpha$, i.e., the Panel B in Table 2.
```{r, message=FALSE, warning=FALSE, cache=TRUE}
comINI = Table2PanelBC[[1]][[1]]
for (a in 2:500) {
comINI = abind(comINI,Table2PanelBC[[a]][[1]],along = 3)
}
print("component from the initial population (Panel B in Table 2)")
round(Table2PanelBC[[1]][[1]],2)[1:2,1:2]
round(colSums(Table2PanelBC[[1]][[1]]),2)[1:2]
print("95% confidence interval:")
round(apply(apply(comINI,c(2,3),sum),c(1),quantile,0.025),2)[1:2]
round(apply(apply(comINI,c(2,3),sum),c(1),quantile,0.975),2)[1:2]
```
## Table 2 - Panel C: From Transitions
Output component from the transitions $\sum_{x=\alpha}^{\beta-1} \mathbf{l}_x \dot{\mathbf{P}}_x\left(\frac{\mathbb{I}}{2}+{ }_{\beta-x-1} \mathbb{e}_{x+1}\right)$., i.e., the Panel C in Table 2.
```{r, message=FALSE, warning=FALSE, cache=TRUE}
comTRANS = Reduce(`+`, Table2PanelBC[[1]]) - Table2PanelBC[[1]][[1]]
for (a in 2:500) {
comTRANS = abind(comTRANS,Reduce(`+`, Table2PanelBC[[a]]) - Table2PanelBC[[a]][[1]],along = 3)
}
print("component from the the transitions (Panel c in Table 2)")
round(Reduce(`+`, Table2PanelBC[[1]]) - Table2PanelBC[[1]][[1]],2)[1:2,1:2]
round(colSums(Reduce(`+`, Table2PanelBC[[1]]) - Table2PanelBC[[1]][[1]]),2)[1:2]
print("95% confidence interval:")
round(apply(apply(comTRANS,c(2,3),sum),c(1),quantile,0.025),2)[1:2]
round(apply(apply(comTRANS,c(2,3),sum),c(1),quantile,0.975),2)[1:2]
```
## Table 2 - Panel D: From Each Transition Probability
In the previous section, we obtained decomposition results from the transitions $\sum_{x=\alpha}^{\beta-1} \mathbf{l}_x \dot{\mathbf{P}}_x\left(\frac{\mathbb{I}}{2}+{ }_{\beta-x-1} \mathbb{e}_{x+1}\right)$, and in the following we discuss the contributions of the transitions for different states.
We first examine the effect from transition matrix at age $x$ denoted as $\Lambda_x$, where $\Lambda_x=\mathbf{l}_x \dot{\mathbf{P}}_x\left(\frac{\mathbb{I}}{2}+{ }_{\beta-x-1} \mathbb{e}_{x+1}\right)$.
For a state-space with states $1,2, \ldots, n$, the matrices of terms are all with the dimension of $n \times n$. The survivorship function at age $x$ is $\mathbf{l}_x=\left[\begin{array}{cccc}l_x^{11} & l_x^{12} & \cdots & l_x^{1 n} \\ l_x^{21} & l_x^{22} & \cdots & l_x^{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ l_x^{n 1} & l_x^{n 2} & \cdots & l_x^{n n}\end{array}\right]$.
$\dot{\mathbf{P}}_x$ and ${ }_{\beta-x} \mathbb{e}_x$ share the same structure as $\mathbf{P}_x$ and ${ }_{\beta-x} \mathbf{e}_x$, so
$$\dot{\mathbf{P}}_x =\left[\begin{array}{cccc}\dot{p}_x^{11} & \dot{p}_x^{12} & \cdots & \dot{p}_x^{1 n} \\ \dot{p}_x^{21} & \dot{p}_x^{22} & \cdots & \dot{p}_x^{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ \dot{p}_x^{n 1} & \dot{p}_x^{n 2} & \cdots & \dot{p}_x^{n n}\end{array}\right]$$
$${ }_{\beta-x} \mathbf{e}_x =\left[\begin{array}{cccc}{}_{\beta-x}\varepsilon_{x}^{11} & {}_{\beta-x}\varepsilon_{x}^{12} & \cdots & {}_{\beta-x}\varepsilon_{x}^{1 n} \\ {}_{\beta-x}\varepsilon_{x}^{21} & {}_{\beta-x}\varepsilon_{x}^{22} & \cdots & {}_{\beta-x}\varepsilon_{x}^{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ {}_{\beta-x}\varepsilon_{x}^{n 1} & {}_{\beta-x}\varepsilon_{x}^{n 2} & \cdots & {}_{\beta-x}\varepsilon_{x}^{n n}\end{array}\right]$$
$$\boldsymbol{\Lambda}_x = \left[\begin{array}{cccc}\lambda_x^{11} & \lambda_x^{12} & \cdots & \lambda_x^{1 n} \\ \lambda_x^{21} & \lambda_x^{22} & \cdots & \lambda_x^{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_x^{n 1} & \lambda_x^{n 2} & \cdots & \lambda_x^{n n}\end{array}\right]$$
Each of the element in $\boldsymbol{\Lambda}_x$ can be calculated as,
$$
\lambda_x^{i j}=\frac{\sum_{g=1}^n l_x^{i g} \dot{p}_x^{g j}}{2}+\sum_{g=1}^n \sum_{h=1}^n l_x^{i g} \dot{p}_x^{g h}{ }_{\beta-x-1} \varepsilon_{x+1}^{h j}
$$
The effect of a specific transition probability from $g$ to $h$ can be represented as
$$
{ }^{g h} \lambda_x^{i j}=\frac{l_x^{i g} \dot{p}_x^{g j}}{2}+l_x^{i g} \dot{p}_x^{g h}{ }_{\beta-x-1} \varepsilon_{x+1}^{h j},
$$
Summing up this effect by column, ${ }^{g h} \lambda_x^j=\sum_{i=1}^n{ }^{g h} \lambda_x^{i j}$, is the contribution to the differential in expectancy of each destination state, $j$, by the difference of the specific transition probability at age $x$. Thus, the effect from comparisons of a specific transition probability at age $x$ on the differential in expectancy of state $j$ can be rewritten as,
$${ }^{g h} \lambda_x^{. j}=\sum_{i=1}^n\left(\frac{l_x^{i g} \dot{p}_x^{g j}}{2}+l_x^{i g} \dot{p}_x^{g h}{ }_{\beta-x-1} \varepsilon_{x+1}^{h j}\right)$$
### Function 8: DecomByTrans_func
**DecomByTrans_func** : Function for decomposition of differences in transition probabilities.
```{r DecomByTrans_func, message=FALSE, warning=FALSE, cache=TRUE}
# Function for decomposition of differences in transition probabilities.
DecomByTrans_func <- function(dim,diff_P,mean_l,SUM){
DecomByTrans = vector(mode = "list",length = length(SUM))
for (i in 2:length(SUM)) {
lambda = c()
for(j in c(1:dim)){
for (k in c(1:dim)) {
for (g in c(1:dim)) {
tem = mean_l[[i-1]][j,]*diff_P[[i-1]][,g]*SUM[[i]][g,k]
lambda = append(lambda,tem)
}
}
}
# reshape the data
lambda = matrix(lambda,dim,dim^3,byrow = T)
cn = c()
for (j in c(1:dim)) {
for (g in c(1:dim)) {
cn = append(cn, paste0(g,j))
}
}
A = array(0,c(dim,dim,dim^2),dimnames = list(c(1:dim),c(1:dim),cn))
for (j in c(1:dim^2)) {
A[,,j] = lambda[,c(seq(j,dim^3,by=dim^2))]
}
DecomByTrans[[i]] = A
}
DecomByTrans[[1]] = array(0,c(dim,dim,dim^2),dimnames = list(c(1:dim),c(1:dim),cn))
return(DecomByTrans)
}
```
Calculating results for 500 iterations to generate confidence intervals.
```{r , message=FALSE, warning=FALSE, cache=TRUE}
yeard = 1
registerDoParallel(min(detectCores(),12))
Table2PanelD = foreach(i=1:500,.packages = c("tidyverse")) %dopar% {
## For female
l0_female = l0_func(data = INI, gender = 2, iteration = i)
P_female = P_func (data=TRANS, gender=2,iteration=i)
l_female = lx_func(P_female,l0_female)
## For male
l0_male = l0_func(data = INI, gender = 1, iteration = i)
P_male = P_func (data=TRANS, gender=1,iteration=i)
l_male = lx_func(P_male,l0_male)
mean_l = list()
for (i in 1:length(l_male)) {
mean_l[[i]] = (l_female[[i]]+l_male[[i]])/2
}
diff_P = list()
mean_P = list()
for (i in 1:length(P_male)) {
diff_P[[i]] = (P_female[[i]]-P_male[[i]])/yeard
mean_P[[i]] = (P_female[[i]]+P_male[[i]])/2
}
All_P= All_P_func(P_x=mean_P)
SUM = SUM_func(dim=3, All_P=All_P)
DecomByTrans = DecomByTrans_func(dim=3,diff_P=diff_P,mean_l=mean_l,SUM=SUM)
DecomByTrans
}
stopImplicitCluster()
```
Output decomposition of differences in transition probabilities., i.e., the Panel D in Table 2.
```{r, message=FALSE, warning=FALSE, cache=TRUE}
DecomByTrans = apply(Reduce(`+`,Table2PanelD [[1]]), c(2,3), sum)
for (a in 2:500) {
DecomByTrans = abind(DecomByTrans,apply(Reduce(`+`,Table2PanelD[[a]]), c(2,3), sum) ,along = 3)
}
print("ecomposition of differences in transition probabilities (Panel D in Table 2)")
round(apply(Reduce(`+`,Table2PanelD[[1]]), c(2,3), sum),2)[1:2,c(1,4,2,5)]
print("95% confidence interval:")
round(apply(DecomByTrans,c(1,2),quantile,0.025),2)[1:2,c(1,4,2,5)]
round(apply(DecomByTrans,c(1,2),quantile,0.975),2)[1:2,c(1,4,2,5)]
```