|
| 1 | +import torch |
| 2 | +import torchvision.models as models |
| 3 | +from torch.autograd import Variable |
| 4 | +import numpy as np |
| 5 | +import torch.nn as nn |
| 6 | +import torch.nn.functional as F |
| 7 | +from PIL import Image |
| 8 | +from torchvision import transforms |
| 9 | +import glob |
| 10 | +from torch.utils.data.dataset import Dataset |
| 11 | + |
| 12 | + |
| 13 | +def normalize(x): |
| 14 | + y = x.div(255) |
| 15 | + mean = [0.485, 0.456, 0.406] |
| 16 | + std = [0.229, 0.224, 0.225] |
| 17 | + y[:, 0, :, :] = (y[:, 0, :, :] - mean[0]) / std[0] |
| 18 | + y[:, 1, :, :] = (y[:, 1, :, :] - mean[1]) / std[1] |
| 19 | + y[:, 2, :, :] = (y[:, 2, :, :] - mean[2]) / std[2] |
| 20 | + return y |
| 21 | + |
| 22 | + |
| 23 | +class Conv(nn.Module): |
| 24 | + def __init__(self, in_channels, out_channels, kernel_size, stride=1): |
| 25 | + super(Conv, self).__init__() |
| 26 | + reflection_padding = kernel_size // 2 |
| 27 | + self.reflection_pad = nn.ReflectionPad2d(reflection_padding) |
| 28 | + self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride) |
| 29 | + |
| 30 | + def forward(self, x): |
| 31 | + return self.conv2d(self.reflection_pad(x)) |
| 32 | + |
| 33 | + |
| 34 | +class Res(nn.Module): |
| 35 | + def __init__(self, numChannels): |
| 36 | + super(Res, self).__init__() |
| 37 | + bn_flag = True |
| 38 | + self.conv1 = Conv(numChannels, numChannels, 3, stride=1) |
| 39 | + self.in1 = nn.InstanceNorm2d(numChannels, affine=bn_flag) |
| 40 | + self.relu = nn.ReLU() |
| 41 | + self.conv2 = Conv(numChannels, numChannels, 3, stride=1) |
| 42 | + self.in2 = nn.InstanceNorm2d(numChannels, affine=bn_flag) |
| 43 | + def forward(self, x): |
| 44 | + residual = x |
| 45 | + output = self.in2(self.conv2(self.relu(self.in1(self.conv1(x))))) |
| 46 | + return residual + output |
| 47 | + |
| 48 | + |
| 49 | +class DeConv(nn.Module): |
| 50 | + def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, upsample=2): |
| 51 | + super(DeConv, self).__init__() |
| 52 | + self.upsample = nn.Upsample(scale_factor=upsample) |
| 53 | + self.conv = Conv(in_channels, out_channels, kernel_size, stride=stride) |
| 54 | + |
| 55 | + def forward(self, x): |
| 56 | + return self.conv(self.upsample(x)) |
| 57 | + |
| 58 | + |
| 59 | +class StyleNet(nn.Module): |
| 60 | + def __init__(self): |
| 61 | + super(StyleNet, self).__init__() |
| 62 | + bn_flag = True |
| 63 | + self.relu = nn.ReLU() |
| 64 | + self.conv1 = Conv(3, 32, 9, stride=1) |
| 65 | + self.in1 = nn.InstanceNorm2d(32, affine=bn_flag) |
| 66 | + self.conv2 = Conv(32, 64, 3, stride=2) |
| 67 | + self.in2 = nn.InstanceNorm2d(64, affine=bn_flag) |
| 68 | + self.conv3 = Conv(64, 128, 3, stride=2) |
| 69 | + self.in3 = nn.InstanceNorm2d(128, affine=bn_flag) |
| 70 | + self.res1 = Res(128) |
| 71 | + self.res2 = Res(128) |
| 72 | + self.res3 = Res(128) |
| 73 | + self.res4 = Res(128) |
| 74 | + self.res5 = Res(128) |
| 75 | + self.deconv1 = DeConv(128, 64, kernel_size=3, stride=1, upsample=2) |
| 76 | + self.in4 = nn.InstanceNorm2d(64, affine=bn_flag) |
| 77 | + self.deconv2 = DeConv(64, 32, kernel_size=3, stride=1, upsample=2) |
| 78 | + self.in5 = nn.InstanceNorm2d(32, affine=bn_flag) |
| 79 | + self.conv4 = Conv(32, 3, 9, stride=1) |
| 80 | + |
| 81 | + def forward(self, x): |
| 82 | + x = self.relu(self.in1(self.conv1(x))) |
| 83 | + x = self.relu(self.in2(self.conv2(x))) |
| 84 | + x = self.relu(self.in3(self.conv3(x))) |
| 85 | + x = self.res5(self.res4(self.res3(self.res2(self.res1(x))))) |
| 86 | + x = self.relu(self.in4(self.deconv1(x))) |
| 87 | + x = self.relu(self.in5(self.deconv2(x))) |
| 88 | + return self.conv4(x) |
| 89 | + |
| 90 | +def LoadImage(fname, scale=False): |
| 91 | + # load image and convert to tensor wrapped in a variable |
| 92 | + if scale is True: |
| 93 | + loader = transforms.Compose([transforms.Scale((imsize, imsize)), |
| 94 | + transforms.CenterCrop(imsize), |
| 95 | + transforms.ToTensor(), |
| 96 | + transforms.Lambda(lambda x: x.mul(255))]) |
| 97 | + else: |
| 98 | + loader = transforms.Compose([transforms.Scale((imsize, imsize)), |
| 99 | + transforms.CenterCrop(imsize), |
| 100 | + transforms.ToTensor()]) |
| 101 | + image = Image.open(fname).convert('RGB') |
| 102 | + data = loader(image) |
| 103 | + data = Variable(data.cuda(), volatile=True) |
| 104 | + data = data.unsqueeze(0) |
| 105 | + return data |
| 106 | + |
| 107 | + |
| 108 | +def SaveImage(tensor_transformed, fname, factor=255): |
| 109 | + def RGB(image): |
| 110 | + return (image.transpose(0, 2, 3, 1)*factor).clip(0, 255).astype(np.uint8) |
| 111 | + result = Image.fromarray(RGB(tensor_transformed.data.cpu().numpy())[0]) |
| 112 | + result.save(fname) |
| 113 | + |
| 114 | + |
| 115 | +imsize = 256 |
| 116 | + |
| 117 | +gen = glob.glob('SavedModels/*.model') |
| 118 | +s = torch.load(gen[0]) |
| 119 | +print(gen[0]) |
| 120 | +image = LoadImage('amber.jpg', scale=True) |
| 121 | +SaveImage(s(image), 'SavedImages/candy2.png', factor=1) |
| 122 | + |
0 commit comments