-
-
Notifications
You must be signed in to change notification settings - Fork 6.9k
/
Copy pathvertical_slash_index.cu
380 lines (355 loc) · 14.9 KB
/
vertical_slash_index.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
#include <assert.h>
#include <cuda.h>
#include <torch/all.h>
__device__ void save_blocks(int* block_offset, int64_t range_start,
int64_t range_end, int64_t block_size,
int64_t& block_count, int64_t kv_seqlen) {
if (range_start >= kv_seqlen) {
return;
}
if (range_end > kv_seqlen) {
range_end = kv_seqlen;
}
for (int idx = range_start; idx < range_end; idx += block_size) {
block_offset[block_count++] = idx;
}
}
__global__ void convert_vertical_slash_indexes_kernel(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
int64_t NNZ_V, int64_t NNZ_S,
bool causal // True for intra, False for succ
) {
const int batch_idx = blockIdx.y;
const int head_idx = blockIdx.x;
const int group_idx = blockIdx.z;
int64_t q_seqlen = q_seqlens[batch_idx];
int64_t kv_seqlen = kv_seqlens[batch_idx];
int64_t block_idx_m = group_idx * blockDim.x + threadIdx.x;
int64_t start_m = block_idx_m * BLOCK_SIZE_M;
if (start_m >= q_seqlen) {
return;
}
int64_t end_m = start_m + BLOCK_SIZE_M;
vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V;
slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S;
int64_t row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m;
block_count += row_offset;
block_offset += row_offset * NNZ_S;
column_count += row_offset;
column_index += row_offset * NNZ_V;
bool has_slash = true;
int64_t tmp_col_cnt = 0, tmp_blk_cnt = 0;
int64_t s = 0, v = 0;
int64_t v_idx = vertical_indexes[v++];
int64_t s_idx = slash_indexes[s++];
if (causal) {
while (s_idx >= end_m + (kv_seqlen - q_seqlen) && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + (kv_seqlen - q_seqlen)) has_slash = false;
s_idx = max((kv_seqlen - q_seqlen) + end_m - s_idx, BLOCK_SIZE_M);
} else {
while (s_idx >= end_m + kv_seqlen && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + kv_seqlen) has_slash = false;
s_idx = max(kv_seqlen + end_m - s_idx, BLOCK_SIZE_M);
}
int64_t range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx;
if (!has_slash) {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
}
bool slash_finished = false;
while (1) {
if (v_idx < range_end) {
if (v_idx < range_start) {
column_index[tmp_col_cnt++] = v_idx;
}
if (v < NNZ_V) {
v_idx = vertical_indexes[v++];
} else {
if (causal)
v_idx = end_m + BLOCK_SIZE_N + (kv_seqlen - q_seqlen);
else
v_idx = end_m + BLOCK_SIZE_N + kv_seqlen;
}
} else {
if ((s < NNZ_S && causal) ||
(s < NNZ_S && !causal && slash_indexes[s] >= start_m)) {
if (causal)
s_idx = max((kv_seqlen - q_seqlen) + end_m - slash_indexes[s++],
BLOCK_SIZE_M);
else
s_idx = max(kv_seqlen + end_m - slash_indexes[s++], BLOCK_SIZE_M);
} else {
if (v == NNZ_V || (v_idx > range_start && causal)) {
// add the last vertical if no more slash
if (v == NNZ_V && !causal && v_idx < kv_seqlen) {
column_index[tmp_col_cnt++] = v_idx;
}
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N,
tmp_blk_cnt, kv_seqlen);
break;
} else {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
// if slash_finished but there are vertical left, save current
// blocks
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N,
tmp_blk_cnt, kv_seqlen);
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
slash_finished = true;
}
}
if (!slash_finished) {
if (s_idx > range_end + BLOCK_SIZE_M) {
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N,
tmp_blk_cnt, kv_seqlen);
range_start = s_idx - BLOCK_SIZE_M;
range_end = s_idx;
} else if (s_idx > range_end) {
range_end += BLOCK_SIZE_M;
}
}
}
}
block_count[0] = tmp_blk_cnt;
column_count[0] = tmp_col_cnt;
}
void convert_vertical_slash_indexes_64x64(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t BATCH_SIZE, int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M,
int64_t BLOCK_SIZE_N, int64_t NNZ_V, int64_t NNZ_S, bool causal) {
const int N_THREADS = 64;
const dim3 dimBlock(N_THREADS);
const dim3 dimGrid(N_HEADS, BATCH_SIZE, (N_ROWS + N_THREADS - 1) / N_THREADS);
convert_vertical_slash_indexes_kernel<<<dimGrid, dimBlock>>>(
q_seqlens, kv_seqlens, vertical_indexes, slash_indexes, block_count,
block_offset, column_count, column_index, N_HEADS, N_ROWS, BLOCK_SIZE_M,
BLOCK_SIZE_N, NNZ_V, NNZ_S, causal);
}
void convert_vertical_slash_indexes(
torch::Tensor& block_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& block_offset, // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
torch::Tensor& column_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& column_index, // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
torch::Tensor q_seqlens, // [BATCH, ]
torch::Tensor kv_seqlens, // [BATCH, ]
torch::Tensor vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
torch::Tensor slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int64_t context_size, int64_t block_size_M, int64_t block_size_N,
bool causal) {
cudaSetDevice(q_seqlens.get_device());
int batch_size = slash_indexes.size(0);
int num_heads = slash_indexes.size(1);
int nnz_slash = slash_indexes.size(2);
int nnz_vertical = vertical_indexes.size(2);
int num_rows = (context_size + block_size_M - 1) / block_size_M;
convert_vertical_slash_indexes_64x64(
q_seqlens.data_ptr<int>(), kv_seqlens.data_ptr<int>(),
vertical_indexes.data_ptr<int>(), slash_indexes.data_ptr<int>(),
block_count.data_ptr<int>(), block_offset.data_ptr<int>(),
column_count.data_ptr<int>(), column_index.data_ptr<int>(), batch_size,
num_heads, num_rows, block_size_M, block_size_N, nnz_vertical, nnz_slash,
causal);
}
__global__ void convert_vertical_slash_indexes_kernel_mergehead(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
const int* per_head_vertical_topkv, const int* per_head_slash_topkv,
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M, int64_t BLOCK_SIZE_N,
int64_t NNZ_V, int64_t NNZ_S,
bool causal // True for intra, False for succ
) {
const int batch_idx = blockIdx.y;
const int head_idx = blockIdx.x;
const int group_idx = blockIdx.z;
int64_t q_seqlen = q_seqlens[batch_idx];
int64_t kv_seqlen = kv_seqlens[batch_idx];
int64_t block_idx_m = group_idx * blockDim.x + threadIdx.x;
int64_t start_m = block_idx_m * BLOCK_SIZE_M;
if (start_m >= q_seqlen) {
return;
}
int64_t end_m = start_m + BLOCK_SIZE_M;
vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V;
slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S;
int64_t row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m;
block_count += row_offset;
block_offset += row_offset * NNZ_S;
column_count += row_offset;
column_index += row_offset * NNZ_V;
// MergeHead: each head has it's unique max topk NNZ_V,NNZ_S. (NNZ_V,NNZ_S
// above is buffer size, use to compute offset)
NNZ_S = per_head_slash_topkv[head_idx];
NNZ_V = per_head_vertical_topkv[head_idx];
bool has_slash = true;
int64_t tmp_col_cnt = 0, tmp_blk_cnt = 0;
int64_t s = 0, v = 0;
int64_t v_idx = vertical_indexes[v++];
int64_t s_idx = slash_indexes[s++];
if (causal) {
while (s_idx >= end_m + (kv_seqlen - q_seqlen) && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + (kv_seqlen - q_seqlen)) has_slash = false;
s_idx = max((kv_seqlen - q_seqlen) + end_m - s_idx, BLOCK_SIZE_M);
} else {
while (s_idx >= end_m + kv_seqlen && s < NNZ_S) {
s_idx = slash_indexes[s++];
}
if (s_idx > end_m + kv_seqlen) has_slash = false;
s_idx = max(kv_seqlen + end_m - s_idx, BLOCK_SIZE_M);
}
int64_t range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx;
if (!has_slash) {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
}
bool slash_finished = false;
while (1) {
if (v_idx < range_end) {
if (v_idx < range_start) {
column_index[tmp_col_cnt++] = v_idx;
}
if (v < NNZ_V) {
v_idx = vertical_indexes[v++];
} else {
if (causal)
v_idx = end_m + BLOCK_SIZE_N + (kv_seqlen - q_seqlen);
else
v_idx = end_m + BLOCK_SIZE_N + kv_seqlen;
}
} else {
if ((s < NNZ_S && causal) ||
(s < NNZ_S && !causal && slash_indexes[s] >= start_m)) {
if (causal)
s_idx = max((kv_seqlen - q_seqlen) + end_m - slash_indexes[s++],
BLOCK_SIZE_M);
else
s_idx = max(kv_seqlen + end_m - slash_indexes[s++], BLOCK_SIZE_M);
} else {
if (v == NNZ_V || (v_idx > range_start && causal)) {
// add the last vertical if no more slash
if (v == NNZ_V && !causal && v_idx < kv_seqlen) {
column_index[tmp_col_cnt++] = v_idx;
}
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N,
tmp_blk_cnt, kv_seqlen);
break;
} else {
if (causal) {
range_start = (kv_seqlen - q_seqlen) + end_m;
range_end = (kv_seqlen - q_seqlen) + end_m + BLOCK_SIZE_N;
} else {
// if slash_finished but there are vertical left, save current
// blocks
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N,
tmp_blk_cnt, kv_seqlen);
range_start = kv_seqlen;
range_end = kv_seqlen + BLOCK_SIZE_N;
}
slash_finished = true;
}
}
if (!slash_finished) {
if (s_idx > range_end + BLOCK_SIZE_M) {
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N,
tmp_blk_cnt, kv_seqlen);
range_start = s_idx - BLOCK_SIZE_M;
range_end = s_idx;
} else if (s_idx > range_end) {
range_end += BLOCK_SIZE_M;
}
}
}
}
block_count[0] = tmp_blk_cnt;
column_count[0] = tmp_col_cnt;
}
void convert_vertical_slash_indexes_64x64_mergehead(
const int* q_seqlens, // [BATCH, ]
const int* kv_seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int* per_head_vertical_topkv, int* per_head_slash_topkv,
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int64_t BATCH_SIZE, int64_t N_HEADS, int64_t N_ROWS, int64_t BLOCK_SIZE_M,
int64_t BLOCK_SIZE_N, int64_t NNZ_V, int64_t NNZ_S, bool causal) {
const int N_THREADS = 64;
const dim3 dimBlock(N_THREADS);
const dim3 dimGrid(N_HEADS, BATCH_SIZE, (N_ROWS + N_THREADS - 1) / N_THREADS);
convert_vertical_slash_indexes_kernel_mergehead<<<dimGrid, dimBlock>>>(
q_seqlens, kv_seqlens, vertical_indexes, slash_indexes,
per_head_vertical_topkv, per_head_slash_topkv, block_count, block_offset,
column_count, column_index, N_HEADS, N_ROWS, BLOCK_SIZE_M, BLOCK_SIZE_N,
NNZ_V, NNZ_S, causal);
}
void convert_vertical_slash_indexes_mergehead(
torch::Tensor& block_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& block_offset, // [BATCH, N_HEADS, NUM_ROWS, NNZ_S]
torch::Tensor& column_count, // [BATCH, N_HEADS, NUM_ROWS]
torch::Tensor& column_index, // [BATCH, N_HEADS, NUM_ROWS, NNZ_V]
torch::Tensor q_seqlens, // [BATCH, ]
torch::Tensor kv_seqlens, // [BATCH, ]
torch::Tensor vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
torch::Tensor slash_indexes, // [BATCH, N_HEADS, NNZ_S]
torch::Tensor vertical_indices_count, // [N_HEADS, ]
torch::Tensor slash_indices_count, int64_t context_size,
int64_t block_size_M, int64_t block_size_N, bool causal) {
cudaSetDevice(q_seqlens.get_device());
int batch_size = slash_indexes.size(0);
int num_heads = slash_indexes.size(1);
int nnz_slash = slash_indexes.size(2);
int nnz_vertical = vertical_indexes.size(2);
int num_rows = (context_size + block_size_M - 1) / block_size_M;
convert_vertical_slash_indexes_64x64_mergehead(
q_seqlens.data_ptr<int>(), kv_seqlens.data_ptr<int>(),
vertical_indexes.data_ptr<int>(), slash_indexes.data_ptr<int>(),
vertical_indices_count.data_ptr<int>(),
slash_indices_count.data_ptr<int>(), block_count.data_ptr<int>(),
block_offset.data_ptr<int>(), column_count.data_ptr<int>(),
column_index.data_ptr<int>(), batch_size, num_heads, num_rows,
block_size_M, block_size_N, nnz_vertical, nnz_slash, causal);
}