-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber_of_ways_to_split_array.py
50 lines (37 loc) · 1.83 KB
/
number_of_ways_to_split_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
You are given a 0-indexed integer array nums of length n.
nums contains a valid split at index i if the following are true:
The sum of the first i + 1 elements is greater than or equal to the sum of the last n - i - 1 elements.
There is at least one element to the right of i. That is, 0 <= i < n - 1.
Return the number of valid splits in nums.
Example 1:
Input: nums = [10,4,-8,7]
Output: 2
Explanation:
There are three ways of splitting nums into two non-empty parts:
- Split nums at index 0. Then, the first part is [10], and its sum is 10. The second part is [4,-8,7], and its sum is 3. Since 10 >= 3, i = 0 is a valid split.
- Split nums at index 1. Then, the first part is [10,4], and its sum is 14. The second part is [-8,7], and its sum is -1. Since 14 >= -1, i = 1 is a valid split.
- Split nums at index 2. Then, the first part is [10,4,-8], and its sum is 6. The second part is [7], and its sum is 7. Since 6 < 7, i = 2 is not a valid split.
Thus, the number of valid splits in nums is 2.
Example 2:
Input: nums = [2,3,1,0]
Output: 2
Explanation:
There are two valid splits in nums:
- Split nums at index 1. Then, the first part is [2,3], and its sum is 5. The second part is [1,0], and its sum is 1. Since 5 >= 1, i = 1 is a valid split.
- Split nums at index 2. Then, the first part is [2,3,1], and its sum is 6. The second part is [0], and its sum is 0. Since 6 >= 0, i = 2 is a valid split.
Constraints:
2 <= nums.length <= 105
-105 <= nums[i] <= 105
"""
class Solution:
def waysToSplitArray(self, nums: List[int]) -> int:
total_sum = sum(nums)
prefix_sum = 0
count = 0
for i in range(len(nums)-1):
prefix_sum = prefix_sum + nums[i]
suffix_sum = total_sum - prefix_sum
if prefix_sum >= suffix_sum:
count = count + 1
return count