-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum_width_of_binary_tree.py
59 lines (40 loc) · 1.76 KB
/
maximum_width_of_binary_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Given the root of a binary tree, return the maximum width of the given tree.
The maximum width of a tree is the maximum width among all levels.
The width of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes that would be present in a complete binary tree extending down to that level are also counted into the length calculation.
It is guaranteed that the answer will in the range of a 32-bit signed integer.
Example 1:
Input: root = [1,3,2,5,3,null,9]
Output: 4
Explanation: The maximum width exists in the third level with length 4 (5,3,null,9).
Example 2:
Input: root = [1,3,2,5,null,null,9,6,null,7]
Output: 7
Explanation: The maximum width exists in the fourth level with length 7 (6,null,null,null,null,null,7).
Example 3:
Input: root = [1,3,2,5]
Output: 2
Explanation: The maximum width exists in the second level with length 2 (3,2).
Constraints:
The number of nodes in the tree is in the range [1, 3000].
-100 <= Node.val <= 100
"""
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def widthOfBinaryTree(self, root: Optional[TreeNode]) -> int:
queue = deque([(root, 1)])
maxwidth = 0
while queue:
maxwidth = max(maxwidth, queue[-1][1] - queue[0][1] + 1)
for _ in range(len(queue)):
node, index = queue.popleft()
if node and node.left:
queue.append((node.left, index * 2))
if node and node.right:
queue.append((node.right, index * 2 + 1))
return maxwidth