-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlongest_increasing_subsequence.py
47 lines (37 loc) · 1.14 KB
/
longest_increasing_subsequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Given an integer array nums, return the length of the longest strictly increasing
subsequence
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?
"""
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
def binary_search(tails, target):
left, right = 0, len(tails) - 1
while left <= right:
mid = (left + right) // 2
if tails[mid] < target:
left = mid + 1
else:
right = mid - 1
return left
tails = []
for num in nums:
if not tails or num > tails[-1]:
tails.append(num)
else:
position = binary_search(tails, num)
tails[position] = num
return len(tails)