@@ -49,20 +49,83 @@ <h1 id="main-heading">Visualize It</h1>
49
49
< div class ="text ">
50
50
< h2 > Tricritical Directed Percolation</ h2 >
51
51
52
+ < center >
53
+ < p > Tricritical Directed Percolation (TDP) is a DP-class model that can be used to study
54
+ vegetation dynamics, not only because the processes in this model have analogies in the
55
+ context of ecology, but also because it possesses both continuous and abrupt transitions.</ p >
56
+ </ center >
57
+ < br >
58
+
52
59
< div class ="container " style ="width:90% ">
53
60
< div class ="row ">
54
61
< div class ="col s12 l8 ">
55
62
< canvas id ="canvas "> </ canvas >
56
63
</ div >
57
64
< div class ="col s12 l4 ">
58
-
65
+ < hr >
66
+ < center >
67
+ < p >
68
+ < b > Green:</ b > Vegetation (Occupied)
69
+ < br >
70
+ < b > Black:</ b > Desert (Unoccupied)
71
+ </ p >
72
+ < p id ="occupancy-display "> </ p >
73
+ < hr >
74
+ < b > Simulation controls:</ b >
75
+ < br > < br >
76
+ < span id ="p-display "> </ span >
77
+ < input id ="p-input " type ="range " min ="0 " max ="1 " step ="0.01 " oninput ="updateParams('p') "
78
+ onchange ="updateParams('p') ">
79
+
80
+ < span id ="q-display "> </ span >
81
+ < input id ="q-input " type ="range " min ="0 " max ="1 " step ="0.01 " oninput ="updateParams('q') "
82
+ onchange ="updateParams('q') ">
83
+
84
+ < span id ="speed-display "> </ span >
85
+ < input id ="speed-input " type ="range " min ="1 " max ="10 " step ="1 " oninput ="updateParams('speed') "
86
+ onchange ="updateParams('speed') ">
87
+ < br > < br >
88
+
89
+ < button id ="pause-button " class ="btn purple darken-4 " onclick ="pauseToggle() "> Pause</ button >
90
+ < button class ="btn purple darken-4 " onclick ="initParams() "> Restart</ button >
91
+ < br > < br >
92
+ < b > If the landscape has gone completely barren or become completely filled, then press 'Restart' to
93
+ repopulate</ b >
94
+ < hr >
95
+ </ center >
59
96
</ div >
60
97
</ div >
61
98
</ div >
62
99
63
100
< br >
64
101
< hr >
65
102
103
+ < h3 > Working</ h3 >
104
+
105
+ The system consists of an N x N array of cells wherein each cell can be either 0 (unoccupied) or 1 (occupied). The
106
+ transitions are dictated as follows:
107
+
108
+ < ol >
109
+ < li > Step 1: Select a random cell. Call this the 'focal cell'</ li >
110
+ < li > Step 2: If the focal cell is unoccupied, return to step (1). Otherwise, proceed to step (3)</ li >
111
+ < li > Step 3: Randomly select one of its four Von-Neumann neighbours. If the selected neighbour is unoccupied, then
112
+ proceed to step (d). Otherwise, proceed to step (e)</ li >
113
+ < li > Step 4: With probability p, update the unoccupied neighbour cell from 0 to 1. This process is
114
+ reproduction. Otherwise (with probability 1 - p), update the focal cell from 1 to 0.
115
+ This is stochastic death.</ li >
116
+ < li > Step 5: The focal cell and neighbour cell collectively have 6 Von-Neumann neighbours. Select
117
+ one at random. With probability q, update the selected cell to 1 (irrespective of its initial
118
+ state). This is positive-feedback birth. Otherwise (with probability 1- q), update the
119
+ focal cell from 1 to 0. This is density death.</ li >
120
+ </ ol >
121
+
122
+ < br >
123
+ < hr >
124
+ < br >
125
+
126
+ < br >
127
+ < hr >
128
+
66
129
< p class ="center-align "> Developed by ChanRT | Fork me at < a href ="https://www.github.com/chanrt "> GitHub</ a > </ p >
67
130
</ div >
68
131
</ body >
0 commit comments