-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_eval.py
59 lines (43 loc) · 1.72 KB
/
custom_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
from transformers import BertModel, BertTokenizer
from torch.utils.data import DataLoader, Dataset
from sklearn.metrics import accuracy_score
from datasets import load_dataset
from torch.utils.data import DataLoader
import numpy as np
class SampleDataset(Dataset):
def __init__(self, texts, labels, tokenizer):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
label = self.labels[idx]
inputs = self.tokenizer(text, padding='max_length', max_length=512, truncation=True, return_tensors="pt")
return inputs, label
def evaluate(model, data_loader):
model.eval()
predictions, true_labels = [], []
with torch.no_grad():
for batch in data_loader:
print("batch shape: ", batch[0].items())
inputs = {k: v.squeeze(0) for k, v in batch[0].items()}
labels = batch[1]
outputs = model(**inputs)
logits = outputs.logits
predictions.extend(torch.argmax(logits, dim=1).tolist())
true_labels.extend(labels.tolist())
accuracy = accuracy_score(true_labels, predictions)
return accuracy
model = BertModel.from_pretrained('bert-base-uncased', return_dict=True)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
texts = ["This is a positive sentence.", "This is a negative sentence."]
labels = [1, 0]
dataset = SampleDataset(texts, labels, tokenizer)
data_loader = DataLoader(dataset, batch_size=2)
# state_dict = torch.load('normal.pth')
# model.load_state_dict(state_dict)
accuracy = evaluate(model, data_loader)
print(f"Accuracy: {accuracy}")