-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·430 lines (404 loc) · 26.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from pdbstats import *
from pdbanalysis import *
from generic_distributions import *
from central_distributions import *
from permissions import *
from randomcoil import *
from molecular_systems import *
import os, sys
import numpy
import scipy
from probsource import *
import cProfile
from multiprocessing import Process, Queue
from memory_profiler import profile
import datetime, time
from tmscore import *
from charmm import *
from sparc_distribution import *
from maxwell_scores import *
import loading_indicator
def test_probsource(prob, peptide):
for conformation in prob._iter_permissible_randomcoils(peptide.aminoacids[4:8], peptide.aminoacids[3], peptide.aminoacids[8]):
print "Found valid conformation."
'''old = []
for i, residue in enumerate(peptide.aminoacids[4:7]):
old.append(PositionZone(residue.acarbon, residue.i, residue.j, residue.k))
residue.acarbon = conformation[i].alpha_zone
residue.set_axes(conformation[i].x_axis,
conformation[i].y_axis,
conformation[i].z_axis)
print peptide.xyz(escaped=False, highlight=range(4, 7))
for i, aa in enumerate(peptide.aminoacids[4:7]):
aa.acarbon = old[i].alpha_zone
aa.set_axes(old[i].x_axis, old[i].y_axis, old[i].z_axis)'''
def load_dists(basepath, weights={}, concurrent=True, secondary=True):
print "Loading SPARC from {}...".format(basepath)
if not reference_state.is_initialized():
if os.path.exists(os.path.join(basepath, "reference_states.txt")):
reference_state.load_reference_state(os.path.join(basepath, "reference_states.txt"))
if os.path.exists(os.path.join(basepath, "possible_interactions")):
reference_state.load_possible_interactions(os.path.join(basepath, "possible_interactions"))
nonconsec = os.path.join(basepath, "long_range")
if secondary or not os.path.exists(os.path.join(basepath, "consec+secondary")):
consec = os.path.join(basepath, "consec") #+secondary
else:
consec = os.path.join(basepath, "consec+secondary")
medium = os.path.join(basepath, "medium")
short_range = os.path.join(basepath, "short_range")
secondary_path = os.path.join(basepath, "secondary")
DistClass = SPARCBasicDistributionManager #SPARCBothOrientationDistributionManager
if concurrent == False:
dist1 = MediumDistributionManager(medium)
dist2 = DistClass(consec, True, blocks_sec_struct=secondary)
if os.path.exists(short_range):
dist3 = DistClass(nonconsec, False, short_range=False)
dist5 = DistClass(short_range, False, short_range=True)
else:
dist3 = DistClass(nonconsec, False)
dist5 = None
if os.path.exists(secondary_path) and secondary:
dist4 = SPARCSecondaryDistributionManager(secondary_path)
else:
dist4 = None
dists = [dist1, dist2, dist3, dist4, dist5]
for d in dists:
if d and d.identifier in weights:
d.weight = weights[d.identifier]
#Always return in the order (consec, secondary, short-range, nonconsec, medium)
loading_indicator.clear_loading_data()
print "Finished loading."
if secondary:
return [x for x in [dist2, dist4, dist5, dist3, dist1] if x]
else:
return [x for x in [dist2, dist5, dist3, dist1] if x]
processes = []
queue = multiprocessing.Queue()
def generate_distmanager(cls, q, *args):
dist = cls(*args)
if dist.identifier in weights:
dist.weight = weights[dist.identifier]
q.put(dist)
p1 = multiprocessing.Process(target=generate_distmanager, args=(SPARCBasicDistributionManager, queue, nonconsec, False, False, False))
processes.append(p1)
p1.start()
p2 = multiprocessing.Process(target=generate_distmanager, args=(SPARCBasicDistributionManager, queue, consec, True, True))
processes.append(p2)
p2.start()
p3 = multiprocessing.Process(target=generate_distmanager, args=(MediumDistributionManager, queue, medium))
processes.append(p3)
p3.start()
p4 = multiprocessing.Process(target=generate_distmanager, args=(SPARCSecondaryDistributionManager, queue, secondary_path))
processes.append(p4)
p4.start()
p5 = multiprocessing.Process(target=generate_distmanager, args=(SPARCBasicDistributionManager, queue, short_range, False, False, True))
processes.append(p5)
p5.start()
dists = []
dists.append(queue.get())
dists.append(queue.get())
dists.append(queue.get())
dists.append(queue.get())
dists.append(queue.get())
p1.join()
p2.join()
p3.join()
p4.join()
p5.join()
if secondary:
distributions = ["", "", "", "", ""]
for dist in dists:
if dist.identifier == "consec": distributions[0] = dist
elif dist.identifier == "secondary": distributions[1] = dist
elif dist.identifier == "short_range": distributions[2] = dist
elif dist.identifier == "long_range": distributions[3] = dist
elif "medium" in dist.identifier: distributions[4] = dist
else:
distributions = ["", "", "", ""]
for dist in dists:
if dist.identifier == "consec+secondary": distributions[0] = dist
elif dist.identifier == "short_range": distributions[1] = dist
elif dist.identifier == "long_range": distributions[2] = dist
elif "medium" in dist.identifier: distributions[3] = dist
print "Finished loading."
loading_indicator.clear_loading_data()
return distributions
def load_central_dist(basepath, secondary=True):
central_manager = SPARCCentralDistributionManager(os.path.join(basepath, "default"), os.path.join(basepath, "random_coil_ref"))
medium = os.path.join(basepath, "medium")
medium_dist = MediumDistributionManager(medium)
if secondary:
return [SPARCCentralDistributionPuppet(central_manager, sparc_consecutive_mode), SPARCCentralDistributionPuppet(central_manager, sparc_secondary_mode), SPARCCentralDistributionPuppet(central_manager, sparc_short_range_mode), SPARCCentralDistributionPuppet(central_manager, sparc_long_range_mode), medium_dist]
else:
return [SPARCCentralDistributionPuppet(central_manager, sparc_consec_secondary_mode), SPARCCentralDistributionPuppet(central_manager, sparc_short_range_mode), SPARCCentralDistributionPuppet(central_manager, sparc_long_range_mode), medium_dist]
def extract_dist_weights(dists):
ret = {}
for d in dists:
ret[d.identifier] = d.weight
return ret
def apply_dist_weights(dists, w):
for d in dists:
if d.identifier in w:
d.weight = w[d.identifier]
#{ "consec": 4.0, "secondary": 4.0, "short_range": 1.0, "long_range": 4.0, "medium": 5.0 }
def func(weights={ "consec": 3.0, "secondary": 3.0, "short_range": 2.0, "long_range": 2.0, "medium": 3.0 }, base="refined-bpti/"):
#Weights used to be 2, 4, 8
dists = load_dists(weights=weights) #load_dists(weights={frequency_nonconsec_disttype: 9.0, frequency_consec_disttype: 4.0, medium_disttype: 3.0})
sec_struct_weights = { "consec": 3.0, "secondary": 3.0, "short_range": 1.0, "long_range": 1.0, "medium": 0.0 }
#cProfile.runctx('simulate_fold(dists, seq="RPDFCLE", outname="segments/seg1.pdb")', {'dists': dists, 'simulate_fold': simulate_fold}, {})
#Insulin - GIVEQCCTSICSLYQLENYCN, FVNQHLCGSHLVEALYLVCGERGFFYTPKT
'''apply_dist_weights(dists, sec_struct_weights)
simulate_fold(dists, seq="GIVEQCC", outname=base + "seg1.pdb", sec_structs="helix,1,1,7")
apply_dist_weights(dists, weights)
simulate_fold(dists, seq="TSIC", outname=base + "seg2.pdb")
apply_dist_weights(dists, sec_struct_weights)
simulate_fold(dists, seq="SLYQLEN", outname=base + "seg3.pdb", sec_structs="helix,1,1,7")
apply_dist_weights(dists, weights)
simulate_fold(dists, seq="YCN", outname=base + "seg4.pdb")
simulate_fold(dists, seq="FVNQHLC", outname=base + "seg5.pdb", sec_structs="helix,1,1,7")
apply_dist_weights(dists, sec_struct_weights)
simulate_fold(dists, seq="GSHLVEAL", outname=base + "seg6.pdb", sec_structs="helix,1,1,8")
simulate_fold(dists, seq="YLVCG", outname=base + "seg7.pdb", sec_structs="helix,1,1,5")
simulate_fold(dists, seq="ERG", outname=base + "seg8.pdb", sec_structs="helix,5,1,3")
apply_dist_weights(dists, weights)
simulate_fold(dists, seq="FFYTPKT", outname=base + "seg9.pdb")'''
'''segment_fold(dists, seq1="GIVEQCC", seq2="TSIC", infiles=["/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg1.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg2.pdb"], outname=base + "seg12.pdb", sec_structs="helix,1,1,7")
segment_fold(dists, seq1="SLYQLEN", seq2="YCN", infiles=["/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg3.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg4.pdb"], outname=base + "seg34.pdb", sec_structs="helix,1,1,7")
segment_fold(dists, seq1="FVNQHLC", seq2="GSHLVEAL", infiles=["/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg5.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg6.pdb"], outname=base + "seg56.pdb", sec_structs="helix,1,1,15")
segment_fold(dists, seq1="YLVCG", seq2="ERG", infiles=["/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg7.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg8.pdb"], outname=base + "seg78.pdb", sec_structs="helix,1,1,5\nhelix,5,6,8")
segment_fold(dists, seq1="GIVEQCCTSIC", seq2="SLYQLENYCN", infiles=["/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg12.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg34.pdb"], outname=base + "seg1234.pdb", sec_structs="helix,1,1,7\nhelix,1,12,18")
segment_fold(dists, seq1="YLVCGERG", seq2="FFYTPKT", infiles=["/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg78.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg9.pdb"], outname=base + "seg789.pdb", sec_structs="helix,1,1,5\nhelix,5,6,8")'''
#segment_fold(dists, seq1="FVNQHLCGSHLVEAL", seq2="YLVCGERGFFYTPKT", infiles=["/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg56.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/insulin/seg789.pdb"], outname=base + "seg56789.pdb", sec_structs="helix,1,1,15\nhelix,1,16,20\nhelix,5,21,23")
#simulate_fold(dists, outname=base + "seg_all.pdb", model_count=20, n=2500, sec_structs="HELIX 1 1 PRO A 2 GLU A 7 5 6\nHELIX 2 2 SER A 47 GLY A 56 1 10\nSHEET 1 A 2 ILE A 18 ASN A 24 0\nSHEET 2 A 2 LEU A 29 TYR A 35 -1 N TYR A 35 O ILE A 18")
print "Moving to segment 1"
#apply_dist_weights(dists, sec_struct_weights)
#simulate_fold(dists, seq="RPDFCLE", outname=base + "seg1.pdb", sec_structs="helix,5,2,7")
'''print "Moving to segment 2"
apply_dist_weights(dists, weights)
simulate_fold(dists, seq="PPYAG", outname=base + "seg2.pdb")
print "Moving to segment 3"
simulate_fold(dists, seq="ACRAR", outname=base + "seg3.pdb")'''
print "Moving to segment 4"
apply_dist_weights(dists, sec_struct_weights)
simulate_fold(dists, seq="IIRYFYN", outname=base + "seg4.pdb", sec_structs="sheet,0,1,7", n=1000)
'''print "Moving to segment 5"
apply_dist_weights(dists, weights)
simulate_fold(dists, seq="AKAG", outname=base + "seg5.pdb")'''
print "Moving to segment 6"
apply_dist_weights(dists, sec_struct_weights)
simulate_fold(dists, seq="LCQTFVY", outname=base + "seg6.pdb", sec_structs="sheet,0,1,7", n=1000)
'''print "Moving to segment 7"
apply_dist_weights(dists, weights)
simulate_fold(dists, seq="GGCRA", outname=base + "seg7.pdb")
print "Moving to segment 8"
simulate_fold(dists, seq="KRNNFK", outname=base + "seg8.pdb")'''
print "Moving to segment 9"
apply_dist_weights(dists, sec_struct_weights)
simulate_fold(dists, seq="SAEDC", outname=base + "seg9.pdb", sec_structs="helix,1,1,5")
print "Moving to segment 10"
simulate_fold(dists, seq="LRTCGGA", outname=base + "seg10.pdb", sec_structs="helix,1,1,5")
def test_folding_parameters(dists):
permissions = AAPermissionsManager("/Users/venkatesh-sivaraman/Desktop/sciencefair/allowed-zones")
peptide = Polypeptide()
#"GRYRRCIPGMFRAYCYMD" (2LWT - GRY...MD, 2MDB - KWC...CR)
#"KWCFRVCYRGICYRRCR"
prob = AAProbabilitySource(peptide, dists, permissions)
for cutoff in numpy.arange(3.0, 5.5, 1.0):
for proximity in numpy.arange(0.4, 1.1, 0.2):
prob.steric_cutoff = cutoff
prob.erratic_proximity = proximity
print "Starting to analyze {} and {}".format(cutoff, proximity)
peptide.randomcoil("TTCCPSIVARSNFNVCRLPGTPSEALICATYTGCIIIPGATCPGDYAN", permissions)
center = Point3D.zero()
for aa in peptide.aminoacids:
center = center.add(aa.acarbon)
center = center.multiply(1.0 / len(peptide.aminoacids))
for aa in peptide.aminoacids:
aa.acarbon = aa.acarbon.subtract(center)
scores = [sum(dist.score(peptide, peptide.aminoacids) for dist in dists)]
print scores[-1], "Avg:", scores[-1] / len(peptide.aminoacids)
for i in xrange(100):
seglen = segment_length(scores[-1] / len(peptide.aminoacids))
folding.folding_iteration(peptide, prob, seglen)
center = Point3D.zero()
for aa in peptide.aminoacids:
center = center.add(aa.acarbon)
center = center.multiply(1.0 / len(peptide.aminoacids))
for aa in peptide.aminoacids:
aa.acarbon = aa.acarbon.subtract(center)
scores.append(sum(dist.score(peptide, peptide.aminoacids) for dist in dists))
print i, scores[-1] / len(peptide.aminoacids)
print "Average score: {}".format(float(sum(scores)) / float(len(scores)))
'''for score in xrange(int(math.floor(min(scores))), int(math.ceil(max(scores)))):
print score, sum((s >= score and s < score + 1.0) for s in scores)'''
del scores[:]
def randomcoiltest():
peptide = Polypeptide()
peptide.randomcoil("ARDRFGANMILILGGA")
#print "movie.addFrame([ChemDoodle.readXYZ(\'" + peptide.xyz() + "\')],[]);"
print peptide.xyz(escaped=False)
prob = ProbabilitySource(peptide)
for i in xrange(400):
folding.folding_iteration(peptide, prob, random.randint(1,4))
#print "movie.addFrame([ChemDoodle.readXYZ(\'" + peptide.xyz() + "\')],[]);"
#print i
print peptide.xyz(escaped=False)
def analysis():
root = "/Volumes/External Hard Drive/School archives/Science Fair/2015/sciencefair/filtered-frequencies-consec" #"/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/SPARC/nonconsec"
total_zones = 0
total_count = 0
for path in os.listdir(root):
if path.find(".txt") == -1: continue
print path
zones = quantiles(os.path.join(root, path))
if path == "all.txt":
#total_zones += zones * total_count
pass
else:
total_zones += zones
total_count += 1
print "Average:", float(total_zones) / float(total_count)
def list_alphacarbons():
root = "/Volumes/External Hard Drive/Science Fair 2014-15/non-redundant-pdb-data-2"
output = "/Volumes/External Hard Drive/Science Fair 2014-15/test-nonconsec"
calculate_pdb_alphacarbons(root, output, mode=alphacarbon_mode)
def test_directedrandomwalk():
startpt = Point3D(0.0, 0.0, 0.0)
endpt = Point3D(6.0, 6.0, 6.0)
for i in xrange(100):
zones = directed_randomwalk(startpt, endpt, 3, 3.0)
print "%d\nNo comment\n" % (len(self.aminoacids) * 4)
zones.insert(0, PositionZone(startpt))
zones.append(PositionZone(endpt))
for zone in zones:
print "C\t%.4f\t%.4f\t%.4f\n" % (zone.alpha_zone.x, zone.alpha_zone.y, zone.alpha_zone.z)
print "\n"
def illustrate_permissible():
protein = Polypeptide()
aa1 = AminoAcid("ALA", 0, acarbon=Point3D(0.0, 0.0, 0.0))
aa1.set_axes(Point3D(1.0, 0.0, 0.0), Point3D(0.0, 1.0, 0.0), Point3D(0.0, 0.0, 1.0))
aa2 = AminoAcid("ALA", 1)
protein.aminoacids = [aa1, aa2]
permissions = AASecondaryStructurePermissionsManager("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/SPARC 3/permissible_sequences")
for pz in permissions.allowed_conformations(aa2, aa1, "helix", 1):
aa2.acarbon = pz.alpha_zone
aa2.set_axes(pz.x_axis, pz.y_axis, pz.z_axis)
print protein.xyz(escaped=False)
def supplement_natives(input):
nativepath = "/Users/venkatesh-sivaraman/Downloads/casp11.targets_unsplitted.release11242014"
distributions = load_dists(concurrent=False)
dists = ["", "", ""]
for dist in distributions:
if dist.type == frequency_nonconsec_disttype: dists[0] = dist
elif dist.type == frequency_consec_disttype: dists[1] = dist
elif dist.type == medium_disttype: dists[2] = dist
for path in os.listdir(input):
if path == "T0781.txt" or path == "T0786.txt" or path == "T0791.txt" or path == "T0801.txt" or path == "T0800.txt": continue
if ".txt" not in path: continue
with open(os.path.join(input, path), "r") as file:
contents = file.read()
nativename = path[:path.find(".txt")] + "_orig.pdb"
nativefile = path[:path.find(".txt")] + ".pdb"
if nativename not in contents and nativefile not in contents:
print path
time.sleep(5)
if os.path.exists(join(nativepath, nativefile)):
bounds, scores = sparc_scores_file(join(nativepath, nativefile), dists, retbounds=True)
if scores is not None:
with open(os.path.join(input, path), "a") as file:
file.write("{}; {}, {}, {}\n".format(nativename, scores[0], scores[1], scores[2]))
else:
print join(nativepath, nativefile), "does not exist."
del contents
gc.collect()
def analyze_relative_orientations(path):
peptide = Polypeptide()
peptide.read(path, otheratoms=True)
for i, aa in enumerate(peptide.aminoacids):
if len(peptide.aminoacids) > i + 1:
zone = aa.aa_position_zone(peptide.aminoacids[i + 1]).alpha_zone
retro_zone = peptide.aminoacids[i + 1].aa_position_zone(aa).alpha_zone
print "{}\t{}\t{}".format(i, zone, retro_zone)
def aminoacid_type_variation():
aa1 = AminoAcid(amino_acid_alanine, 1)
aa1.set_axes(Point3D(1, 0, 0), Point3D(0, 1, 0), Point3D(0, 0, 1))
aa2 = AminoAcid(amino_acid_alanine, 2)
aa2.set_axes(Point3D(1, 0, 0), Point3D(0, 1, 0), Point3D(0, 0, 1))
basepath = "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/SPARC 3"
if not reference_state.is_initialized() and os.path.exists(os.path.join(basepath, "reference_states.txt")):
reference_state.load_reference_state(os.path.join(basepath, "reference_states.txt"))
nonconsec = os.path.join(basepath, "short-range")
dist = SPARCBasicDistributionManager(nonconsec, False, short_range=True)
for i in xrange(AMINO_ACID_COUNT):
aa2.type = aatype(i)
for point in Point3D.zero().iteroffsets(10.0):
if point.x != 0.0: continue
aa2.acarbon = point
freq = dist.alpha_frequency(aacode(aa1.type), aacode(aa2.type), aa1.tolocal(aa2.acarbon))
print "{}\t{}\t{}".format(point.y, point.z, freq)
print "\n"
if __name__ == '__main__':
#func()
#generate_distance_constrained_bins("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/bins_test.txt")
#print z_score("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/tasser", w, structure_files="/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoys/tasser-decoys")
#print z_score("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/casp", w, structure_files="/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoys/casp-decoys")
#print determine_omits("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Nonredundant/all_pdb_ids.txt", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Nonredundant/omits.txt")
#best_weights_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/bpti-analysis/sparc_scores", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/bpti-analysis/rmsds", None, numweights=4, start=[0, 2, 3, 4])
#load_central_dist("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/consolidated-sparc/SPARC 4")
#best_weights_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/corrected", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/TM-scores/casp", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/casp-natives", numweights=4, tmscore=True)
#best_weights_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/corrected", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/TM-scores/casp", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/casp-natives", numweights=4, tmscore=True)
#best_weights("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/rw/casp-rw", numweights=1)
#best_weights("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/rw/tasser-rw", numweights=1)
#best_weights("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/goap/casp-goap", numweights=1)
#best_weights("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/goap/tasser-goap", numweights=1)
#best_weights_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/ref-tests/average", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/TM-scores/casp", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/casp-natives", numweights=4)
#Average: Final: the combos [1, 1, 5, 1] had a total of 1 correct guesses, with R^2 0.486152814813
#Interaction Median: Final: the combos [1, 5, 5, 1] had a total of 1 correct guesses, with R^2 0.335183666746
#best_weights_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/tasser-correct-orient", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/TM-scores/tasser", None, numweights=4, tmscore=True) #"/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/casp-natives"
#best_weights_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/bpti-long-refine-scores/sparc", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/bpti-long-refine-scores/tm", None, numweights=5)
#analyze_relative_orientations("/Users/venkatesh-sivaraman/Downloads/1QLQ.pdb")
#decoys_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/tasser-decoys", None, "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/rmsd") #/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoys/casp-decoys,
#min1 = min_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/bpti-laptop/seg12.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/segments/native.pdb", range=[1, 12], writeout=True)
#min2 = min_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/bpti-laptop/seg56.pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/segments/native.pdb", range=[36, 46])
#print min1, min2
#print "We did main"
'''lowest_scores = [ [10000, None], [10000, None], [10000, None], [10000, None], [10000, None] ]
basepath = "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/segment_weight_test"
for fname in os.listdir(basepath):
if "pdb" not in fname or "seg" not in fname: continue
idx = int(fname[fname.find("seg") + 3 : fname.find(".")])
weights = [int(x) for x in fname[:3]]
print idx, weights
min = min_rmsd(os.path.join(basepath, fname), os.path.join("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/segments", "native_seg" + str(idx) + ".pdb"))
if min < lowest_scores[idx - 1][0]:
lowest_scores[idx - 1][0] = min
lowest_scores[idx - 1][1] = weights
print "New best"
print lowest_scores'''
'''sparc_dir = "/Users/venkatesh-sivaraman/Documents/Xcode Projects/PythonProteins/potential"
dists_noref = load_dists(sparc_dir, concurrent=True, secondary=True)
for d in dists_noref: d.refstate = False
dists_yesref = load_dists(sparc_dir, concurrent=True, secondary=True)
for d in dists_yesref: d.refstate = True
distributions = dists_noref + dists_yesref
min_rmsd("/Users/venkatesh-sivaraman/Desktop/bpti/seg4.pdb", "/Users/venkatesh-sivaraman/Downloads/1QLQ.pdb", range=[18, 35], dists=distributions, separate_scores=True)'''
'''mins = []
for i in range(1, 9):
mins.append(min_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/refined-bpti/seg" + str(i) + ".pdb", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/refined-bpti/native_seg" + str(i) + ".pdb"))
print mins'''
#link_decoy_rmsd("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Decoy Output/casp", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/rmsd-casp-backbone", [9.0, 4.0, 3.0])
#protein_protein_energies("/Users/venkatesh-sivaraman/Downloads/1DUM.pdb", load_dists(secondary=False), "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/magainin_test_yz_gromos.txt")
'''basepath = "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/segments"
for decoyset in os.listdir(basepath):
if "segments" in basepath and ("native" in decoyset or not os.path.exists(os.path.join(basepath, "native_" + decoyset))): continue
if decoyset[0] == ".": continue
if os.path.exists(os.path.join("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/TM-scores/simul", decoyset + ".txt")): continue
calculate_tm_scores(os.path.join(basepath, decoyset), os.path.join("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/TM-scores/simul", decoyset + ".txt"), natives=os.path.join(basepath, "native_" + decoyset)) #, natives="/Users/venkatesh-sivaraman/Downloads/casp11.targets_unsplitted.release11242014")'''
#batch_compare_charmm_sparc("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/casp-decoys", dists, "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/casp_charmm.txt")
#score_structure_file("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Simulations/segments-test/seg12-3.pdb", distributions)
#sparc_score_sequences("/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/Nonredundant/all_pdb_ids.txt", "/Users/venkatesh-sivaraman/Documents/School/Science Fair/2016-proteins/sequence_scores_charmm.txt", dists, charmm_scores=False)
'''for x in xrange(1, 4):
for y in xrange(1, 4):
for z in xrange(1, 4):
print "Testing weights", x, y, z
func(weights={ "consec": x, "secondary": x, "short-range": y, "nonconsec": 0.0, "medium": z }, base="segment_weight_test_sec/" + str(x) + str(y) + str(z))'''