diff --git a/build/pkgs/configure/checksums.ini b/build/pkgs/configure/checksums.ini index 1c872212d2e..4bd7a420050 100644 --- a/build/pkgs/configure/checksums.ini +++ b/build/pkgs/configure/checksums.ini @@ -1,3 +1,3 @@ tarball=configure-VERSION.tar.gz -sha1=852d0d200a6a73aa5ddb9e00874cbe4a61c211e9 -sha256=c4b089d90850dfdf15b905f66e4f6a0d961b96eb0663d8603beaff1a9efb2cbe +sha1=b79cb72625e1d309aedbcfccec6d3fe95285f41a +sha256=df8b16fae6e8facd9ef1f3190bf10a9a4c7d3d0acd5ebd13e3a7a539045b29cb diff --git a/build/pkgs/configure/package-version.txt b/build/pkgs/configure/package-version.txt index 093cb148078..a50abfe83fa 100644 --- a/build/pkgs/configure/package-version.txt +++ b/build/pkgs/configure/package-version.txt @@ -1 +1 @@ -a2ba1f943f88775218c385efe55509c4548d1b44 +66623f6c03c69f4552f04e4cfcc3d3a2139c0010 diff --git a/src/sage/algebras/fusion_rings/f_matrix.py b/src/sage/algebras/fusion_rings/f_matrix.py index b832a520fec..e48a89fc664 100644 --- a/src/sage/algebras/fusion_rings/f_matrix.py +++ b/src/sage/algebras/fusion_rings/f_matrix.py @@ -1991,7 +1991,7 @@ def _get_explicit_solution(self, eqns=None, verbose=True): def find_orthogonal_solution(self, checkpoint=False, save_results='', warm_start='', use_mp=True, verbose=True): r""" - Solve the the hexagon and pentagon relations, along with + Solve the hexagon and pentagon relations, along with orthogonality constraints, to evaluate an orthogonal F-matrix. INPUT: diff --git a/src/sage/algebras/hecke_algebras/cubic_hecke_algebra.py b/src/sage/algebras/hecke_algebras/cubic_hecke_algebra.py index faa4e90baf1..514d9b035d7 100644 --- a/src/sage/algebras/hecke_algebras/cubic_hecke_algebra.py +++ b/src/sage/algebras/hecke_algebras/cubic_hecke_algebra.py @@ -352,7 +352,7 @@ def matrix(self, subdivide=False, representation_type=None, original=False): [(-2*a + u)*b - 2*a^2 + 2*u*a - v b 0] [ b 1 a] - using the the ``representation_type`` option:: + using the ``representation_type`` option:: sage: CHA3. = algebras.CubicHecke(3) # optional gap3 sage: chevie = CHA3.repr_type.SplitIrredChevie # optional gap3 @@ -364,7 +364,7 @@ def matrix(self, subdivide=False, representation_type=None, original=False): [ b 0] [a^2 - u*a + v -b - a + u] - using the the ``original`` option:: + using the ``original`` option:: sage: c0mo = c0.matrix(original=True) sage: c0mo_ch = c0.matrix(representation_type=chevie, original=True) # optional gap3 diff --git a/src/sage/homology/homology_vector_space_with_basis.py b/src/sage/homology/homology_vector_space_with_basis.py index ee30f144282..977968fdcb3 100644 --- a/src/sage/homology/homology_vector_space_with_basis.py +++ b/src/sage/homology/homology_vector_space_with_basis.py @@ -1253,7 +1253,7 @@ def _acted_upon_(self, a, self_on_left): ret = CombinatorialFreeModule.Element._acted_upon_(self, a, self_on_left) if ret is not None: # did the scalar action return ret - if self_on_left: # i.e., module element on left + if self_on_left: # i.e., module element on left a = a.antipode() b = a.change_basis('adem') ans = self.parent().zero() @@ -1283,7 +1283,7 @@ def steenrod_module_map(self, deg_domain, deg_codomain, side='left'): the action as a left module action or a right module We will write this with respect to the left action; - for the right action, just switch all of the the tensors. + for the right action, just switch all of the tensors. Writing `m` for ``deg_domain`` and `n` for ``deg_codomain``, this returns `A^{n-m} \otimes H^{m} \to H^{n}`, one single component of the map making `H` into an `A`-module. diff --git a/src/sage/rings/complex_interval.pyx b/src/sage/rings/complex_interval.pyx index c050d794055..4fd7e6bbcf3 100644 --- a/src/sage/rings/complex_interval.pyx +++ b/src/sage/rings/complex_interval.pyx @@ -2237,7 +2237,7 @@ cdef _circle_invert_standard( # Consider the images # f(xmin + ymin * I), ..., f(xmax + ymax * I) # of the four corners of the input rect under inversion f. - # Now consider the the axis-parallel rectangle R that these images span. + # Now consider the axis-parallel rectangle R that these images span. # In general, the image of the input rect might not be contained in R. # In case 1, however, (and only in case 1) it is and we furthermore know # which image is mapped to which edge of R. Thus, we have: diff --git a/src/sage/rings/polynomial/polynomial_element.pyx b/src/sage/rings/polynomial/polynomial_element.pyx index 3c057d49a6f..b8445edeb20 100644 --- a/src/sage/rings/polynomial/polynomial_element.pyx +++ b/src/sage/rings/polynomial/polynomial_element.pyx @@ -2280,7 +2280,7 @@ cdef class Polynomial(CommutativePolynomial): - ``degree`` -- ``None`` or positive integer (default: ``None``). Used for polynomials over finite fields. If ``None``, returns - the the first factor found (usually the smallest). Otherwise, + the first factor found (usually the smallest). Otherwise, attempts to return an irreducible factor of ``self`` of chosen degree ``degree``. diff --git a/src/sage/schemes/elliptic_curves/ell_number_field.py b/src/sage/schemes/elliptic_curves/ell_number_field.py index 8af221880b6..518fda03481 100644 --- a/src/sage/schemes/elliptic_curves/ell_number_field.py +++ b/src/sage/schemes/elliptic_curves/ell_number_field.py @@ -290,7 +290,8 @@ def simon_two_descent(self, verbose=0, lim1=2, lim3=4, limtriv=2, # time (when known_points may have increased) will not cause # another execution of simon_two_descent. try: - result = self._simon_two_descent_data[lim1,lim3,limtriv,maxprob,limbigprime] + result = self._simon_two_descent_data[lim1, lim3, limtriv, + maxprob, limbigprime] if verbose == 0: return result except AttributeError: @@ -2343,7 +2344,7 @@ def gens(self, **kwds): sage: gg=E.gens(lim3=13); gg # long time (about 4s) [(... : 1)] - Check that the the point found has infinite order, and that it is on the curve:: + Check that the point found has infinite order, and that it is on the curve:: sage: P=gg[0]; P.order() # long time +Infinity @@ -2447,7 +2448,7 @@ def period_lattice(self, embedding): -0.14934463314391922099120107422 - 2.0661954627294548995621225062*I) """ from sage.schemes.elliptic_curves.period_lattice import PeriodLattice_ell - return PeriodLattice_ell(self,embedding) + return PeriodLattice_ell(self, embedding) def real_components(self, embedding): """