@@ -13,23 +13,23 @@ def __init__(self, outputs, inputs):
13
13
14
14
self .num_classes = outputs
15
15
16
- self .conv1 = BBBConv2d (inputs , 64 , 11 , alpha_shape = (1 ,1 ), stride = 4 , padding = 5 , bias = False )
16
+ self .conv1 = BBBConv2d (inputs , 64 , 11 , alpha_shape = (1 ,1 ), stride = 4 , padding = 5 , bias = False , name = 'conv1' )
17
17
self .soft1 = nn .Softplus ()
18
18
self .pool1 = nn .MaxPool2d (kernel_size = 2 , stride = 2 )
19
19
20
- self .conv2 = BBBConv2d (64 , 192 , 5 , alpha_shape = (1 ,1 ), padding = 2 , bias = False )
20
+ self .conv2 = BBBConv2d (64 , 192 , 5 , alpha_shape = (1 ,1 ), padding = 2 , bias = False , name = 'conv2' )
21
21
self .soft2 = nn .Softplus ()
22
22
self .pool2 = nn .MaxPool2d (kernel_size = 2 , stride = 2 )
23
23
24
- self .conv3 = BBBConv2d (192 , 384 , 3 , alpha_shape = (1 ,1 ), padding = 1 , bias = False )
24
+ self .conv3 = BBBConv2d (192 , 384 , 3 , alpha_shape = (1 ,1 ), padding = 1 , bias = False , name = 'conv3' )
25
25
self .soft3 = nn .Softplus ()
26
26
27
- self .conv4 = BBBConv2d (384 , 256 , 3 , alpha_shape = (1 ,1 ), padding = 1 , bias = False )
27
+ self .conv4 = BBBConv2d (384 , 256 , 3 , alpha_shape = (1 ,1 ), padding = 1 , bias = False , name = 'conv4' )
28
28
self .soft4 = nn .Softplus ()
29
29
30
- self .conv5 = BBBConv2d (256 , 128 , 3 , alpha_shape = (1 ,1 ), padding = 1 , bias = False )
30
+ self .conv5 = BBBConv2d (256 , 128 , 3 , alpha_shape = (1 ,1 ), padding = 1 , bias = False , name = 'conv5' )
31
31
self .soft5 = nn .Softplus ()
32
32
self .pool3 = nn .MaxPool2d (kernel_size = 2 , stride = 2 )
33
33
34
34
self .flatten = FlattenLayer (1 * 1 * 128 )
35
- self .classifier = BBBLinear (1 * 1 * 128 , outputs , alpha_shape = (1 ,1 ), bias = False )
35
+ self .classifier = BBBLinear (1 * 1 * 128 , outputs , alpha_shape = (1 ,1 ), bias = False , name = 'classifier' )
0 commit comments