-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_training.py
267 lines (218 loc) · 10.6 KB
/
cnn_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os, time
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import torch.optim as optim
import random
import math
import warnings
import pandas as pd
import scipy.signal as scisignal
import sklearn.utils.class_weight as class_weight
from sklearn.decomposition import PCA
# load data
segments_df = pd.read_json('data/pretty_segments_df.json')
channels_arr = list(np.load(open('data/channels_arr.npy','rb')))
# fixed held out test set runs
chosen_runs = ['20220824_run02_a', '20220826_run02_a', '20220826_run03_a', '20220907_run01_a', '20221213_run02_a', '20221214_run01_a']
# features and labels
index_to_aa = [c for c in 'CSAGTVNQMILYWFPHRKDE']
aa_to_index = {aa:i for i, aa in enumerate(index_to_aa)}
# change putative deamidated N labels
for name, row in segments_df[segments_df.aa == 'N'][segments_df['max'] > 1.3].iterrows():
segments_df.at[name, 'aa'] = 'D'
# stretch signals, to account for variable lenths
def stretch(arr, new_len):
if len(arr) == new_len:
return arr
return torch.tensor([arr[int(i/new_len*len(arr))] for i in range(new_len)])
class MyDataset(Dataset):
def __init__(self, input_data, output_data):
self.input_data = input_data
self.output_data = output_data
def __len__(self):
return len(self.input_data)
def __getitem__(self, idx):
return self.input_data[idx], self.output_data[idx]
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
numpy.random.seed(worker_seed)
random.seed(worker_seed)
# train / validation / test split
tr_segments = segments_df[segments_df.aa != ''][segments_df.pretty][~segments_df.run.isin(chosen_runs)]#[segments_df.channel > 120]
# Validation set used for testing architectures and hyperparameter tuning, but final model was trained with the entire training set
# vl_segments = segments_df[segments_df.aa != ''][segments_df.pretty][~segments_df.run.isin(chosen_runs)][segments_df.channel <= 120]
te_segments = segments_df[segments_df.aa != ''][segments_df.pretty][segments_df.run.isin(chosen_runs)]
def get_data(segment_len, batch_size, acids=index_to_aa):
acid_to_index = {aa:i for i, aa in enumerate(acids)}
train_input = tr_segments[tr_segments.aa.isin(acids)].transformed.apply(lambda s: stretch(s, segment_len)).apply(torch.tensor).values
# val_input = vl_segments[vl_segments.aa.isin(acids)].transformed.apply(lambda s: stretch(s, segment_len)).apply(torch.tensor).values
test_input = te_segments[te_segments.aa.isin(acids)].transformed.apply(lambda s: stretch(s, segment_len)).apply(torch.tensor).values
# val_output = vl_segments[vl_segments.aa.isin(acids)].aa.apply(lambda a: acid_to_index[a]).values
train_output = tr_segments[tr_segments.aa.isin(acids)].aa.apply(lambda a: acid_to_index[a]).values
test_output = te_segments[te_segments.aa.isin(acids)].aa.apply(lambda a: acid_to_index[a]).values
# Create instances of the dataset and dataloader
train_dataset = MyDataset(train_input, train_output)
# val_dataset = MyDataset(val_input, val_output)
test_dataset = MyDataset(test_input, test_output)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,worker_init_fn=seed_worker)
# vld_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True,worker_init_fn=seed_worker)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True,worker_init_fn=seed_worker)
class_weights=class_weight.compute_class_weight(class_weight='balanced',classes=np.unique(train_output),y=train_output)
class_weights=torch.tensor(class_weights,dtype=torch.float)
return train_loader, test_loader, class_weights #vld_loader,
class CNN(nn.Module):
def __init__(self, hidden_size, dropout, use_gru, segment_len, init,
O_1=8, O_2=32, O_3=32, O_4=64, n_classes=20,
K_1 = 2, K_2 = 1, K_3 = 4, K_4 = 2,
KP_1 = 4, KP_2 = 4, KP_3 = 1, KP_4 = 1,
act='Th', n_layers=2):
reshape = segment_len
self.act = act
self.conv_linear_out = int(math.floor((math.floor((math.floor((math.floor((math.floor((reshape - K_1 + 1)/KP_1)
- K_2 + 1)/KP_2)
- K_3 + 1)/KP_3)
- K_4 + 1)/KP_4))) * O_4)
self.FN_1 = hidden_size
self.use_gru = use_gru
super(CNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv1d(1, O_1, K_1), nn.ReLU(),
nn.MaxPool1d(KP_1))
self.conv2 = nn.Sequential(nn.Conv1d(O_1, O_2, K_2), nn.ReLU(),
nn.MaxPool1d(KP_2))
self.conv3 = nn.Sequential(nn.Conv1d(O_2, O_3, K_3), nn.ReLU(),
nn.MaxPool1d(KP_3))
self.conv4 = nn.Sequential(nn.Conv1d(O_3, O_4, K_4), nn.ReLU(),
nn.MaxPool1d(KP_4))
self.gru = nn.GRU(input_size=self.conv_linear_out, hidden_size=self.FN_1, num_layers=n_layers, dropout=dropout)
self.fc1 = nn.Linear(self.conv_linear_out, self.FN_1, nn.Dropout(dropout))
self.fc2 = nn.Linear(self.FN_1, n_classes)
if init:
if init == "KN":
nn.init.kaiming_normal_(self.conv1[0].weight)
nn.init.kaiming_normal_(self.conv2[0].weight)
nn.init.kaiming_normal_(self.conv3[0].weight)
nn.init.kaiming_normal_(self.conv4[0].weight)
nn.init.kaiming_normal_(self.fc1.weight)
nn.init.kaiming_normal_(self.fc2.weight)
elif init == 'XN':
nn.init.xavier_normal_(self.conv1[0].weight)
nn.init.xavier_normal_(self.conv2[0].weight)
nn.init.xavier_normal_(self.conv3[0].weight)
nn.init.xavier_normal_(self.conv4[0].weight)
nn.init.xavier_normal_(self.fc1.weight)
nn.init.xavier_normal_(self.fc2.weight)
elif init == "KNC":
nn.init.kaiming_normal_(self.conv1[0].weight)
nn.init.kaiming_normal_(self.conv2[0].weight)
nn.init.kaiming_normal_(self.conv3[0].weight)
nn.init.kaiming_normal_(self.conv4[0].weight)
elif init == 'XNC':
nn.init.xavier_normal_(self.conv1[0].weight)
nn.init.xavier_normal_(self.conv2[0].weight)
nn.init.xavier_normal_(self.conv3[0].weight)
nn.init.xavier_normal_(self.conv4[0].weight)
def forward(self, x):
x = x.float()
x = F.leaky_relu(self.conv1(x))
x = F.leaky_relu(self.conv2(x))
x = F.leaky_relu(self.conv3(x))
x = F.leaky_relu(self.conv4(x))
x = x.view(len(x), -1)
if self.use_gru:
x = F.logsigmoid(self.gru(x)[0])
else:
x = F.logsigmoid(self.fc1(x)[0])
x = self.fc2(x)
return x
def train(model, optimizer,lmbd, epochs, criterion, train_loader): #, vld_loader
use_cuda = False
losses = []
accs = []
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
if use_cuda and torch.cuda.is_available():
inputs = inputs.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(inputs.unsqueeze(1))
loss = criterion(outputs, labels)
reg_loss = None
for param in model.parameters():
if reg_loss is None:
reg_loss = 0.5 * torch.sum(param**2)
else:
reg_loss = reg_loss + 0.5 * param.norm(2)**2
loss += lmbd * reg_loss
loss.backward()
optimizer.step()
### below is only used for hyperparmater tuning
# correct = 0.0
# total = 0.0
# running_vloss = 0
# with torch.no_grad():
# for i, data in enumerate(vld_loader):
# inputs, labels = data
# if use_cuda and torch.cuda.is_available():
# inputs = inputs.cuda()
# labels = labels.cuda()
# outputs = model(inputs.unsqueeze(1))
# _, predicted = torch.max(outputs.data, 1)
# running_vloss += criterion(outputs, labels).item()
# correct += (predicted == labels).sum().item()
# total += len(labels)
# running_vloss += criterion(outputs, labels).item()
# avg_vloss = running_vloss / (i + 1)
# losses.append(avg_vloss)
# accs.append(correct / total * 100.)
# if epoch %10 == 0:
# print(f"{correct / total * 100.}%")
# return losses, accs
def top_n_cnt(y_test, test_pred, k):
cnt = 0
for yt, pred in zip(y_test, test_pred):
top_k = np.array(torch.topk(pred, k).indices)
if int(yt) in top_k:
cnt += 1
return cnt
batch_size = 16
lmbd = 0
segment_len = 100
use_gru = True
dropout = 0.3
init = 'KN'
hidden_size = 128
momentum = 0.55
epochs = 200
use_weights = True
use_gru = True
act = 'Re'
lr = 0.01
n_layers = 2
acids = index_to_aa
train_loader, test_loader, class_weights = get_data(segment_len, batch_size, acids) #vld_loader,
top_n_experiment = np.zeros((20,20))
for enum in range(20):
model = CNN(hidden_size, dropout, use_gru, segment_len, init, n_classes=len(acids), act=act, n_layers=n_layers)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum = momentum)
criterion = nn.CrossEntropyLoss(weight=class_weights) if use_weights else nn.CrossEntropyLoss()
train(model, optimizer, lmbd, epochs, criterion, train_loader) #losses, accs = vld_loader
with torch.no_grad():
for n_attempts in range(1,len(acids)+1):
total = 0
correct = 0
for data in test_loader:
inputs, labels = data
outputs = model(inputs.unsqueeze(1))
x, predicted = torch.max(outputs.data, 1)
total += len(labels)
correct += top_n_cnt(labels, outputs.data, n_attempts)
top_n_experiment[enum][n_attempts-1] = correct/total
np.save(f"top_n_experiment.npy", top_n_experiment, allow_pickle=True)