|
| 1 | +"""Single drone racing environments.""" |
| 2 | + |
| 3 | +from __future__ import annotations |
| 4 | + |
| 5 | +from typing import TYPE_CHECKING, Literal |
| 6 | + |
| 7 | +from gymnasium import Env |
| 8 | +from gymnasium.vector import VectorEnv |
| 9 | +from gymnasium.vector.utils import batch_space |
| 10 | + |
| 11 | +from lsy_drone_racing.envs.race_core import RaceCoreEnv, action_space, observation_space |
| 12 | + |
| 13 | +if TYPE_CHECKING: |
| 14 | + import numpy as np |
| 15 | + from ml_collections import ConfigDict |
| 16 | + from numpy.typing import NDArray |
| 17 | + |
| 18 | + |
| 19 | +class DroneRaceEnv(RaceCoreEnv, Env): |
| 20 | + def __init__( |
| 21 | + self, |
| 22 | + freq: int, |
| 23 | + sim_config: ConfigDict, |
| 24 | + sensor_range: float, |
| 25 | + track: ConfigDict | None = None, |
| 26 | + disturbances: ConfigDict | None = None, |
| 27 | + randomizations: ConfigDict | None = None, |
| 28 | + random_resets: bool = False, |
| 29 | + seed: int = 1337, |
| 30 | + max_episode_steps: int = 1500, |
| 31 | + device: Literal["cpu", "gpu"] = "cpu", |
| 32 | + ): |
| 33 | + super().__init__( |
| 34 | + n_envs=1, |
| 35 | + n_drones=1, |
| 36 | + freq=freq, |
| 37 | + sim_config=sim_config, |
| 38 | + sensor_range=sensor_range, |
| 39 | + track=track, |
| 40 | + disturbances=disturbances, |
| 41 | + randomizations=randomizations, |
| 42 | + random_resets=random_resets, |
| 43 | + seed=seed, |
| 44 | + max_episode_steps=max_episode_steps, |
| 45 | + device=device, |
| 46 | + ) |
| 47 | + self.action_space = action_space("state") |
| 48 | + n_gates, n_obstacles = len(track.gates), len(track.obstacles) |
| 49 | + self.observation_space = observation_space(n_gates, n_obstacles) |
| 50 | + self.autoreset = False |
| 51 | + |
| 52 | + def reset(self, seed: int | None = None, options: dict | None = None) -> tuple[dict, dict]: |
| 53 | + obs, info = super().reset(seed=seed, options=options) |
| 54 | + obs = {k: v[0, 0] for k, v in obs.items()} |
| 55 | + info = {k: v[0, 0] for k, v in info.items()} |
| 56 | + return obs, info |
| 57 | + |
| 58 | + def step(self, action: NDArray[np.floating]) -> tuple[dict, float, bool, bool, dict]: |
| 59 | + obs, reward, terminated, truncated, info = super().step(action) |
| 60 | + obs = {k: v[0, 0] for k, v in obs.items()} |
| 61 | + info = {k: v[0, 0] for k, v in info.items()} |
| 62 | + return obs, reward[0, 0], terminated[0, 0], truncated[0, 0], info |
| 63 | + |
| 64 | + |
| 65 | +class VecDroneRaceEnv(RaceCoreEnv, VectorEnv): |
| 66 | + def __init__( |
| 67 | + self, |
| 68 | + num_envs: int, |
| 69 | + freq: int, |
| 70 | + sim_config: ConfigDict, |
| 71 | + sensor_range: float, |
| 72 | + track: ConfigDict | None = None, |
| 73 | + disturbances: ConfigDict | None = None, |
| 74 | + randomizations: ConfigDict | None = None, |
| 75 | + random_resets: bool = False, |
| 76 | + seed: int = 1337, |
| 77 | + max_episode_steps: int = 1500, |
| 78 | + device: Literal["cpu", "gpu"] = "cpu", |
| 79 | + ): |
| 80 | + super().__init__( |
| 81 | + n_envs=num_envs, |
| 82 | + n_drones=1, |
| 83 | + freq=freq, |
| 84 | + sim_config=sim_config, |
| 85 | + sensor_range=sensor_range, |
| 86 | + track=track, |
| 87 | + disturbances=disturbances, |
| 88 | + randomizations=randomizations, |
| 89 | + random_resets=random_resets, |
| 90 | + seed=seed, |
| 91 | + max_episode_steps=max_episode_steps, |
| 92 | + device=device, |
| 93 | + ) |
| 94 | + self.single_action_space = action_space("state") |
| 95 | + self.action_space = batch_space(self.single_action_space, num_envs) |
| 96 | + n_gates, n_obstacles = len(track.gates), len(track.obstacles) |
| 97 | + self.single_observation_space = observation_space(n_gates, n_obstacles) |
| 98 | + self.observation_space = batch_space(self.single_observation_space, num_envs) |
| 99 | + |
| 100 | + def reset(self, seed: int | None = None, options: dict | None = None) -> tuple[dict, dict]: |
| 101 | + obs, info = super().reset(seed=seed, options=options) |
| 102 | + obs = {k: v[:, 0] for k, v in obs.items()} |
| 103 | + info = {k: v[:, 0] for k, v in info.items()} |
| 104 | + return obs, info |
| 105 | + |
| 106 | + def step(self, action: NDArray[np.floating]) -> tuple[dict, float, bool, bool, dict]: |
| 107 | + obs, reward, terminated, truncated, info = super().step(action) |
| 108 | + obs = {k: v[:, 0] for k, v in obs.items()} |
| 109 | + info = {k: v[:, 0] for k, v in info.items()} |
| 110 | + return obs, reward[:, 0], terminated[:, 0], truncated[:, 0], info |
0 commit comments