-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclassifyNaiveBayes.m
51 lines (49 loc) · 1.53 KB
/
classifyNaiveBayes.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function yc = classifyNaiveBayes(trnData, tstData)
%
% Machine Learning Project
% Naive Bayes vs Perceptron
% Muhammad Usman Akram
% muhammadusman.akram[at]studenti.unitn.it
% 08/02/2014
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function yc = classifyNaiveBayes(trnData, tstData)
% yc = max_c_i [sumlog(P(attribute_j | c_i))] taking sum of logs of probabilities to avoid
% underflow
cv = unique(trnData(:,1)); % binary classification so 1,2
classDist = hist(trnData(:,1),2)/size(trnData,1); % class distribution
%calculating probabilities given trining set
% 2 classes, M features, K categories
% put attribute as a cell, and category x classes
pA = {};
for tr_j = 1:size(trnData,2)-1
att = trnData(:,tr_j+1);
uVatt = unique(att);
ptemp = zeros(length(uVatt),3);
for v = 1:length(uVatt)
ptemp(v,:) = [uVatt(v), hist(trnData(att == uVatt(v), 1),2)/sum(att == uVatt(v))];
end
pA{tr_j} = ptemp;
end
% Calculate probability of
yc = zeros(size(tstData,1),1);
for i = 1:size(tstData,1)
pC = [0, 0];
for j = 1:size(tstData,2)-1
aV = tstData(i,j+1);
pt = pA{j};
pc = pt(pt(:,1) == aV, 2:end);
if size(pc,1) > 0
pC(1) = pC(1) + log(pc(1)) + log(classDist(1));
pC(2) = pC(2) + log(pc(2)) + log(classDist(2));
end
end
pC(1) = exp(pC(1));
pC(2) = exp(pC(2));
if pC(1)>pC(2)
yc(i) = cv(1);
else
yc(i) = cv(2);
end
end
end