-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathtest_metrics.py
187 lines (146 loc) · 4.59 KB
/
test_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from dataclasses import dataclass
from tml.core import metrics as core_metrics
from tml.core.metric_mixin import MetricMixin, prepend_transform
import torch
from torchmetrics import MaxMetric, MetricCollection, SumMetric
@dataclass
class MockStratifierConfig:
name: str
index: int
value: int
class Count(MetricMixin, SumMetric):
def transform(self, outputs):
return {"value": 1}
Max = prepend_transform(MaxMetric, lambda outputs: {"value": outputs["value"]})
def test_count_metric():
num_examples = 123
examples = [
{"stuff": 0},
] * num_examples
metric = Count()
for outputs in examples:
metric.update(outputs)
assert metric.compute().item() == num_examples
def test_collections():
max_metric = Max()
count_metric = Count()
metric = MetricCollection([max_metric, count_metric])
examples = [{"value": idx} for idx in range(123)]
for outputs in examples:
metric.update(outputs)
assert metric.compute() == {
max_metric.__class__.__name__: len(examples) - 1,
count_metric.__class__.__name__: len(examples),
}
def test_task_dependent_ctr():
num_examples = 144
batch_size = 1024
outputs = [
{
"stuff": 0,
"labels": torch.arange(0, 6).repeat(batch_size, 1),
}
for idx in range(num_examples)
]
for task_idx in range(5):
metric = core_metrics.Ctr(task_idx=task_idx)
for output in outputs:
metric.update(output)
assert metric.compute().item() == task_idx
def test_stratified_ctr():
outputs = [
{
"stuff": 0,
# [bsz, tasks]
"labels": torch.tensor(
[
[0, 1, 2, 3],
[1, 2, 3, 4],
[2, 3, 4, 0],
]
),
"stratifiers": {
# [bsz]
"level": torch.tensor(
[9, 0, 9],
),
},
}
]
stratifier = MockStratifierConfig(name="level", index=2, value=9)
for task_idx in range(5):
metric = core_metrics.Ctr(task_idx=1, stratifier=stratifier)
for output in outputs:
metric.update(output)
# From the dataset of:
# [
# [0, 1, 2, 3],
# [1, 2, 3, 4],
# [2, 3, 4, 0],
# ]
# we pick out
# [
# [0, 1, 2, 3],
# [2, 3, 4, 0],
# ]
# and with Ctr task_idx, we pick out
# [
# [1,],
# [3,],
# ]
assert metric.compute().item() == (1 + 3) / 2
def test_auc():
num_samples = 10000
metric = core_metrics.Auc(num_samples)
target = torch.tensor([0, 0, 1, 1, 1])
preds_correct = torch.tensor([-1.0, -1.0, 1.0, 1.0, 1.0])
outputs_correct = {"logits": preds_correct, "labels": target}
preds_bad = torch.tensor([1.0, 1.0, -1.0, -1.0, -1.0])
outputs_bad = {"logits": preds_bad, "labels": target}
metric.update(outputs_correct)
assert metric.compute().item() == 1.0
metric.reset()
metric.update(outputs_bad)
assert metric.compute().item() == 0.0
def test_pos_rank():
metric = core_metrics.PosRanks()
target = torch.tensor([0, 0, 1, 1, 1])
preds_correct = torch.tensor([-1.0, -1.0, 0.5, 1.0, 1.5])
outputs_correct = {"logits": preds_correct, "labels": target}
preds_bad = torch.tensor([1.0, 1.0, -1.5, -1.0, -0.5])
outputs_bad = {"logits": preds_bad, "labels": target}
metric.update(outputs_correct)
assert metric.compute().item() == 2.0
metric.reset()
metric.update(outputs_bad)
assert metric.compute().item() == 4.0
def test_reciprocal_rank():
metric = core_metrics.ReciprocalRank()
target = torch.tensor([0, 0, 1, 1, 1])
preds_correct = torch.tensor([-1.0, -1.0, 0.5, 1.0, 1.5])
outputs_correct = {"logits": preds_correct, "labels": target}
preds_bad = torch.tensor([1.0, 1.0, -1.5, -1.0, -0.5])
outputs_bad = {"logits": preds_bad, "labels": target}
metric.update(outputs_correct)
assert abs(metric.compute().item() - 0.6111) < 0.001
metric.reset()
metric.update(outputs_bad)
assert abs(metric.compute().item() == 0.2611) < 0.001
def test_hit_k():
hit1_metric = core_metrics.HitAtK(1)
target = torch.tensor([0, 0, 1, 1, 1])
preds_correct = torch.tensor([-1.0, 1.0, 0.5, -0.1, 1.5])
outputs_correct = {"logits": preds_correct, "labels": target}
preds_bad = torch.tensor([1.0, 1.0, -1.5, -1.0, -0.5])
outputs_bad = {"logits": preds_bad, "labels": target}
hit1_metric.update(outputs_correct)
assert abs(hit1_metric.compute().item() - 0.3333) < 0.0001
hit1_metric.reset()
hit1_metric.update(outputs_bad)
assert hit1_metric.compute().item() == 0
hit3_metric = core_metrics.HitAtK(3)
hit3_metric.update(outputs_correct)
assert (hit3_metric.compute().item() - 0.66666) < 0.0001
hit3_metric.reset()
hit3_metric.update(outputs_bad)
assert abs(hit3_metric.compute().item() - 0.3333) < 0.0001