-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
217 lines (171 loc) · 7.17 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import config as cfg
from utils import preprocess
from graph_data import GithubDataset
from train_nn import GCN, GraphSAGE, train_gnn
from logger import logger
import numpy as np
import pandas as pd
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score, f1_score
from sklearn.feature_selection import VarianceThreshold, SelectFromModel
def build_graph(X_train, X_test, y_train, y_test, X_unlabeled, relations, args):
dataset = GithubDataset(
X_train,
X_test,
y_train,
y_test,
X_unlabeled,
relations,
undirected=args["undirected"],
)
graph = dataset[0]
logger.info(f"#nodes: {graph.num_nodes()}, #edges: {graph.num_edges()}")
graph = graph.add_self_loop()
return dataset, graph
def evaluate(y_train, y_pred_train, y_test, y_pred_test):
train_acc = accuracy_score(y_train, y_pred_train)
test_acc = accuracy_score(y_test, y_pred_test)
train_f1 = f1_score(y_train, y_pred_train, average="weighted")
test_f1 = f1_score(y_test, y_pred_test, average="weighted")
logger.info(
"train_acc: {:.3f}, test acc: {:.3f}, train_f1: {:.3f}, test_f1: {:.3f}".format(
train_acc, test_acc, train_f1, test_f1
)
)
return train_acc, test_acc, train_f1, test_f1
def feature_selection(X_train, y_train, args):
if args["feature_selection"] == "variance":
vt = VarianceThreshold(threshold=args["variance_threshold"])
X_train = pd.DataFrame(
vt.fit_transform(X_train),
index=X_train.index,
columns=vt.get_feature_names_out(),
)
return X_train, vt
if args["feature_selection"] == "select_from_model":
if args["select_from"] == "svc":
select_from = LinearSVC(penalty="l1", dual=False, random_state=42)
elif args["select_from"] == "extra_trees":
select_from = ExtraTreesClassifier(random_state=42)
sfm = SelectFromModel(select_from)
X_train = pd.DataFrame(
sfm.fit_transform(X_train, y_train),
index=X_train.index,
columns=sfm.get_feature_names_out(),
)
return X_train, sfm
return X_train, None
def extract_neighborhood_features(df, relations, agg_func):
relations_renamed = relations.rename(columns={"following": "from", "follow": "to"})
relations_renamed_reversed = pd.DataFrame()
relations_renamed_reversed["from"] = relations_renamed["to"].copy()
relations_renamed_reversed["to"] = relations_renamed["from"].copy()
relations_undirected = pd.concat([relations_renamed, relations_renamed_reversed])
merged = relations_undirected.merge(
df.reset_index(), left_on="to", right_on="username"
)
del merged['to']
del merged['username']
merged = merged.groupby("from")
merged = getattr(merged, agg_func)()
merged = merged.add_prefix("Neighbor_")
return merged
def _naive_bayes(X_train, y_train, **args):
clf = MultinomialNB()
clf.fit(X_train, y_train)
return clf
def _logistic_regression(X_train, y_train, **args):
clf = LogisticRegression(max_iter=args["lr_max_iter"])
clf.fit(X_train, y_train)
return clf
def _gcn(graph, dataset, **args):
model = GCN(graph.ndata["feat"].shape[1], args["h_feats"], dataset.num_classes)
train_gnn(graph, model, lr=args["lr"], epochs=args["epochs"])
return model
def _graph_sage(graph, dataset, **args):
model = GraphSAGE(
graph.ndata["feat"].shape[1], args["h_feats"], dataset.num_classes
)
train_gnn(
graph, model, lr=args["lr"], epochs=args["epochs"], patience=args["patience"]
)
return model
def train_model(X_train, y_train, args):
model = models_dict[args["model"]](X_train, y_train, **args)
return model
def train_graph_model(graph, dataset, args):
model = models_dict[args["model"]](graph, dataset, **args)
return model
def run_pipeline(df, labels, relations, **args):
logger.info(f"examples: {df.shape[0]}, features: {df.shape[1]}")
is_graph_model = True if args["model"] in ["GCN", "GraphSAGE"] else False
if not is_graph_model:
df = df.merge(
extract_neighborhood_features(df, relations, args['neighborhood_features']),
left_index=True,
right_index=True,
)
X_trains, X_tests, y_trains, y_tests, X_unlabeled = preprocess(
df, labels, include_unlabeled=is_graph_model, n_splits=args["n_splits"]
)
test_scores = []
for i, (X_train, X_test, y_train, y_test) in enumerate(
zip(X_trains, X_tests, y_trains, y_tests)
):
logger.info(f"split {i+1}: train: {X_train.shape[0]}, test: {X_test.shape[0]}")
X_train, feature_selector = feature_selection(X_train, y_train, args)
if X_unlabeled is not None:
X_unlabeled_ = X_unlabeled.copy()
if feature_selector is not None:
X_test = pd.DataFrame(
feature_selector.transform(X_test),
index=X_test.index,
columns=feature_selector.get_feature_names_out(),
)
if X_unlabeled is not None:
X_unlabeled_ = pd.DataFrame(
feature_selector.transform(X_unlabeled),
index=X_unlabeled.index,
columns=feature_selector.get_feature_names_out(),
)
logger.info(f"After feature selection: {X_train.shape[1]} features.")
if is_graph_model:
dataset, graph = build_graph(
X_train, X_test, y_train, y_test, X_unlabeled_, relations, args
)
model = train_graph_model(graph, dataset, args)
model.eval()
y_pred = model(graph, graph.ndata["feat"].float())
y_pred_train = y_pred[graph.ndata["train_label_mask"]].argmax(1).numpy()
y_pred_test = y_pred[graph.ndata["test_label_mask"]].argmax(1).numpy()
y_pred_train = dataset.l_label.inverse_transform(y_pred_train)
y_pred_test = dataset.l_label.inverse_transform(y_pred_test)
y_train = y_train.sort_index()
y_test = y_test.sort_index()
else:
model = train_model(X_train, y_train, args)
y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)
train_acc, test_acc, train_f1, test_f1 = evaluate(
y_train, y_pred_train, y_test, y_pred_test
)
test_scores.append(test_f1)
test_scores = np.array(test_scores)
mean_test_score = np.round(test_scores.mean(), 3)
std_test_score = np.round(test_scores.std(), 3)
logger.info(f"\tMean F1: {mean_test_score}, Std F1: {std_test_score}")
exp_data = args.copy()
exp_data['mean_test_score'] = mean_test_score
exp_data['std_test_score'] = std_test_score
if args["feature_selection"]:
exp_data["selected_features"] = '; '.join(feature_selector.get_feature_names_out())
return exp_data
models_dict = {
"NaiveBayes": _naive_bayes,
"LogisticRegression": _logistic_regression,
"GCN": _gcn,
"GraphSAGE": _graph_sage,
}