forked from HaythamEffarah/compton-fastfit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
comptonfastfit.m
576 lines (444 loc) · 19.6 KB
/
comptonfastfit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%{
This script is intended for use in the MATLAB GUI. Please see
README.md for code functionality.
Required files and directories:
/fwhm/
fwhm.m
fwonem.m
get2Dfrom4D.m
loadenergies.m
polynomialspectrumfit.m
/Perceptually uniform colormaps/
%}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% SEC 1. Load anchor files into MATLAB workspace (code tested for three)
% Values taken from leading number in anchors_100k file names
energies = [20 60 100];
% Load x-ray output spectra into data cell
if ~exist('data', 'var')
data{length(energies)} = [];
for i = 1:length(energies)
data{i} = loadenergies(sprintf('anchors_100k/%ikeV_6um_xyn.csv', energies(i)));
end
end
%% SEC 2. Convert data into smooth fitted polynomials
polyOrder = 8; %CHOOSE POLYNOMIAL ORDER TO FIT TO ENERGY DISTRIBUTIONS
% Initialize variables and iterator bounds
[m, n, ~, ~] = size(data{1});
[~, o] = size(data);
dataFitted{length(energies)} = [];
muFit = zeros(m,n,length(energies),2);
fitCoeffs = zeros(m,n, polyOrder + 1, o);
testEBound = zeros(m,n,length(energies),2);
% Fit polynomials to anchor distributions
for k = 1:length(energies)
[fitCoeffs(:,:,:,k), testEBound(:,:,k,:), muFit(:,:,k,:),...
dataFitted{k}] = polynomialspectrumfit(data{k}, polyOrder);
end
%--------------------------------------------------------------------------
% DESIGN NOTE: polynomial spectrum fit is only really used for arrays, so
% perhaps changing the function to accept an array rather than iterating
% out here would make things cleaner and more intuitive
%--------------------------------------------------------------------------
%% SEC 3. Create interpolation map
% Initialize variables and iterator bounds, partially redundant to last section
[m, n, ~, ~] = size(data{1});
[~, o] = size(data);
fwonemArray = zeros(m, n, o);
eBound = zeros(m,n,o,2);
meanEnergyArray = zeros(m, n, o);
mu = zeros(m,n,3,2);
muPoly = zeros(m,n,polyOrder+1,2);
predictEBounds = zeros(m,n,3,2);
muBounds = zeros(m,n,2,2);
muPredict = zeros(size(muFit));
predictCoeffs = zeros(m, n, 3, 3); % 3 for # of coeffs, 3 for # of parameters to fit
polyOnPoly = zeros(m, n, polyOrder + 1, 3); %polyfit the fit coefficients
% Create normalized 2D data files for plotting
dataImageRaw = cellfun(@get2Dfrom4D,dataFitted,'UniformOutput',false);
dataImage = zeros(m, n, o);
dataImageNorm = zeros(m, n, o);
% Create normalized image files to see intensity distributions
for k = 1:o
dataImage(:,:,k) = dataImageRaw{k};
dataImageNorm(:,:,k) = dataImageRaw{k} / max(dataImageRaw{k}, [], 'all');
end
% Pixel by pixel calculation of fitting parameters
for i = 1:m
for j = 1:n
for k = 1:o
% Get FW1%M for all files at current pixel
[fwonemArray(i,j,k), eBound(i,j,k,1), eBound(i,j,k,2)] ...
= fwonem(dataFitted{k}(i,j,:,1),dataFitted{k}(i,j,:,2));
% Get mean energy for all files at current pixel
meanEnergyArray(i,j,k) = sum(dataFitted{k}(i,j,:,1) ...
.* dataFitted{k}(i,j,:,2)) ./ sum(dataFitted{k}(i,j,:,2));
end
% Solve for fitting coefficients at current pixel
[predictCoeffs(i,j,:,1), ~, mu(i,j,1,:)] = polyfit(energies, fwonemArray(i,j,:), 2);
[predictEBounds(i,j,:,1), ~, muBounds(i,j,1,:)] = polyfit(energies, testEBound(i,j,:,1), 2);
[predictEBounds(i,j,:,2), ~, muBounds(i,j,2,:)] = polyfit(energies, testEBound(i,j,:,2), 2);
[predictCoeffs(i,j,:,2), ~, mu(i,j,2,:)] = polyfit(energies, meanEnergyArray(i,j,:), 2);
muPredict(i,j,:,1) = polyfit(energies, muFit(i,j,:,1), 2);
muPredict(i,j,:,2) = polyfit(energies, muFit(i,j,:,2), 2);
[predictCoeffs(i,j,:,3), ~, mu(i,j,3,:)] = polyfit(energies, dataImageNorm(i,j,:), 2);
% Fit polynomials to polynomial fitting coefficients
for l = 1:polyOrder + 1
polyOnPoly(i,j,l,:) = polyfit(energies, fitCoeffs(i,j,l,:), 2);
end
end
end
%--------------------------------------------------------------------------
% NOTE: At this point, all the information necessary to produce
% interpolated spectra is here. polyOnPoly is the matrix containing the
% quadratic fit of all polynomial coefficients.
%--------------------------------------------------------------------------
%% SEC 4. Predict spectrum at new energy using just polynomials
predictedEnergy = 20; % CHANGE THIS TO CHANGE PREDICTION
en = linspace(.625 * predictedEnergy, predictedEnergy + 2, 1000); % CHANGE BASED ON predictedEnergy; energy bins
% Initialize variables
newSpec = zeros(m, n, length(en), 2);
newSpecCoeffs = zeros(m, n, polyOrder+1);
newFWONEM = zeros(m, n);
newMeanEnergy = zeros(m, n);
newPhotonDist = zeros(m, n);
newEBounds = zeros(m, n, 2);
newMu = zeros(m,n,2);
for i = 1:m
for j = 1:n
newSpec(i, j, :, 1) = en;
newFWONEM(i,j) = polyval(squeeze(predictCoeffs(i,j,:,1)), ...
predictedEnergy, [], mu(i,j,1,:));
newMu(i,j,1) = polyval(squeeze(muPredict(i,j,:,1)), ...
predictedEnergy);
newMu(i,j,2) = polyval(squeeze(muPredict(i,j,:,2)), ...
predictedEnergy);
newMeanEnergy(i,j) = polyval(squeeze(predictCoeffs(i,j,:,2)), ...
predictedEnergy, [], mu(i,j,2,:));
newPhotonDist(i,j) = polyval(squeeze(predictCoeffs(i,j,:,3)), ...
predictedEnergy, [], mu(i,j,3,:));
newEBounds(i,j,1) = polyval(squeeze(predictEBounds(i,j,:,1)), ...
predictedEnergy, [], muBounds(i,j,1,:));
newEBounds(i,j,2) = polyval(squeeze(predictEBounds(i,j,:,2)), ...
predictedEnergy, [], muBounds(i,j,2,:));
for l = 1:polyOrder + 1
newSpecCoeffs(i,j,l) = ...
polyval(squeeze(polyOnPoly(i,j,l,:)), predictedEnergy);
end
tmp = en >= newEBounds(i,j,1) & en <= newEBounds(i,j,2);
newEn = en(tmp);
muNew = [mean(newEn); std(newEn)]; %% useless
newSpec(i, j, tmp, 2) = polyval(squeeze(newSpecCoeffs(i,j,:)), ...
newEn, [], newMu(i,j,:));
%Clean up stray values outside of single mode distribution
[~, maxLoc] = max(newSpec(i,j,:,2));
scanUp = maxLoc;
scanDown = maxLoc;
while newSpec(i,j,scanUp,2) >= (0.5 * newSpec(i,j,maxLoc,2))
scanUp = scanUp + 1;
end
while (newSpec(i,j,scanUp,2) - newSpec(i,j,scanUp+1,2)) > 0 ...
&& newSpec(i,j,scanUp,2) > 0
scanUp = scanUp + 1;
end
newSpec(i,j,scanUp:end,2) = 0;
while newSpec(i,j,scanDown,2) >= (0.5 * newSpec(i,j,maxLoc,2))
scanDown = scanDown - 1;
end
while (newSpec(i,j,scanDown,2) - newSpec(i,j,scanDown-1,2)) > 0 ...
&& newSpec(i,j,scanDown,2) > 0
scanDown = scanDown - 1;
end
newSpec(i,j,1:scanDown,2) = 0;
end
end
newSpec(newSpec < 0) = 0;
scaling = zeros(m,n);
for i = 1:m
for j = 1:n
power = trapz(squeeze(newSpec(i,j,:,1)), squeeze(newSpec(i,j,:,2)));
scalefactor = newPhotonDist(j,i) / power;
scaling(i,j) = scalefactor;
newSpec(i,j,:,2) = newSpec(i,j,:,2) * scalefactor;
end
end
% New spectrum generated as newSpec!
%% SEC 4A. Produce a set of LCS spectra
% Initialize variables
newSpec = zeros(m, n, 1000, 2);
newSpecCoeffs = zeros(m, n, polyOrder+1);
newFWONEM = zeros(m, n);
newMeanEnergy = zeros(m, n);
newPhotonDist = zeros(m, n);
newEBounds = zeros(m, n, 2);
newMu = zeros(m,n,2);
table1Energies = [25 40 55 65 80 95]; % energies chosen for Table 1
fastfitArray{size(table1Energies,2)} = [];
magicI = 1; % very sloppy, forgive me
for pp = table1Energies
predictedEnergy = pp;
en = linspace((pp * .625), pp + 2, 1000);
for i = 1:m
for j = 1:n
newSpec(i, j, :, 1) = en;
newFWONEM(i,j) = polyval(squeeze(predictCoeffs(i,j,:,1)), ...
predictedEnergy, [], mu(i,j,1,:));
newMu(i,j,1) = polyval(squeeze(muPredict(i,j,:,1)), ...
predictedEnergy);
newMu(i,j,2) = polyval(squeeze(muPredict(i,j,:,2)), ...
predictedEnergy);
newMeanEnergy(i,j) = polyval(squeeze(predictCoeffs(i,j,:,2)), ...
predictedEnergy, [], mu(i,j,2,:));
newPhotonDist(i,j) = polyval(squeeze(predictCoeffs(i,j,:,3)), ...
predictedEnergy, [], mu(i,j,3,:));
newEBounds(i,j,1) = polyval(squeeze(predictEBounds(i,j,:,1)), ...
predictedEnergy, [], muBounds(i,j,1,:));
newEBounds(i,j,2) = polyval(squeeze(predictEBounds(i,j,:,2)), ...
predictedEnergy, [], muBounds(i,j,2,:));
for l = 1:polyOrder + 1
newSpecCoeffs(i,j,l) = ...
polyval(squeeze(polyOnPoly(i,j,l,:)), predictedEnergy);
end
tmp = en >= newEBounds(i,j,1) & en <= newEBounds(i,j,2);
newEn = en(tmp);
muNew = [mean(newEn); std(newEn)]; %% useless
newSpec(i, j, tmp, 2) = polyval(squeeze(newSpecCoeffs(i,j,:)), ...
newEn, [], newMu(i,j,:));
%Clean up stray values outside of single mode distribution
[~, maxLoc] = max(newSpec(i,j,:,2));
scanUp = maxLoc;
scanDown = maxLoc;
while newSpec(i,j,scanUp,2) >= (0.5 * newSpec(i,j,maxLoc,2))
scanUp = scanUp + 1;
end
while (newSpec(i,j,scanUp,2) - newSpec(i,j,scanUp+1,2)) > 0 ...
&& newSpec(i,j,scanUp,2) > 0
scanUp = scanUp + 1;
end
newSpec(i,j,scanUp:end,2) = 0;
while newSpec(i,j,scanDown,2) >= (0.5 * newSpec(i,j,maxLoc,2))
scanDown = scanDown - 1;
end
while (newSpec(i,j,scanDown,2) - newSpec(i,j,scanDown-1,2)) > 0 ...
&& newSpec(i,j,scanDown,2) > 0
scanDown = scanDown - 1;
end
newSpec(i,j,1:scanDown,2) = 0;
end
end
newSpec(newSpec < 0) = 0;
scaling = zeros(m,n);
for i = 1:m
for j = 1:n
power = trapz(squeeze(newSpec(i,j,:,1)), squeeze(newSpec(i,j,:,2)));
scalefactor = newPhotonDist(j,i) / power;
scaling(i,j) = scalefactor;
newSpec(i,j,:,2) = newSpec(i,j,:,2) * scalefactor;
end
end
fastfitArray{magicI} = newSpec;
magicI = magicI + 1;
end
%% SEC 5. Find minimum energy bandwidth circular aperture
% Definitely takes longer than it needs to, as it's a very "dumb" scan, but
% it gets the job done in a few minutes.
% Initialize variables
en = zeros(1,1000);
newSpec = zeros(m, n, length(en), 2);
oldSpec = newSpec;
newSpecCoeffs = zeros(m, n, polyOrder+1);
newFWONEM = zeros(m, n);
newMeanEnergy = zeros(m, n);
newPhotonDist = zeros(m, n);
newEBounds = zeros(m, n, 2);
newMu = zeros(m,n,2);
circlePixels= zeros(m,n,50);
% Create circle mask
centerX = ceil(m / 2);
centerY = ceil(m / 2);
% radius = 20;
for radius = 1:50
[columnsInImage, rowsInImage] = meshgrid(1:m, 1:n);
circlePixels(:,:,radius) = (rowsInImage - centerY).^2 ...
+ (columnsInImage - centerX).^2 <= radius.^2;
end
% Define bandwidth of interest
E_center = 72;
E_halfWidth = E_center * .02;
E_max = E_center + E_halfWidth;
E_min = E_center - E_halfWidth;
% SET start energy and end energy such that eEND > eSTART
eSTART = 70;
eEND = 80;
% SET number of steps
steps = 1:100;
% Calculates step size in energy
deltaE = (eEND - eSTART) / length(steps);
fwhmTracker = zeros(length(steps),50);
integratedSpectrum = zeros(1000,length(steps),50);
newSpecGood = integratedSpectrum;
flux = fwhmTracker;
fluxNorm = fwhmTracker;
for pp = steps
predictedEnergy = eSTART + (pp - 1) * deltaE;
en = linspace((predictedEnergy * .75), predictedEnergy + 2, 1000);
for i = 1:m
for j = 1:n
newSpec(i, j, :, 1) = en;
oldSpec(i, j, :, 1) = en;
newFWONEM(i,j) = polyval(squeeze(predictCoeffs(i,j,:,1)), predictedEnergy, [], mu(i,j,1,:));
newMu(i,j,1) = polyval(squeeze(muPredict(i,j,:,1)), predictedEnergy);
newMu(i,j,2) = polyval(squeeze(muPredict(i,j,:,2)), predictedEnergy);
newMeanEnergy(i,j) = polyval(squeeze(predictCoeffs(i,j,:,2)), predictedEnergy, [], mu(i,j,2,:));
newPhotonDist(i,j) = polyval(squeeze(predictCoeffs(i,j,:,3)), predictedEnergy, [], mu(i,j,3,:));
newEBounds(i,j,1) = polyval(squeeze(predictEBounds(i,j,:,1)), predictedEnergy, [], muBounds(i,j,1,:));
newEBounds(i,j,2) = polyval(squeeze(predictEBounds(i,j,:,2)), predictedEnergy, [], muBounds(i,j,2,:));
for l = 1:polyOrder + 1
newSpecCoeffs(i,j,l) = polyval(squeeze(polyOnPoly(i,j,l,:)), predictedEnergy);
end
tmp = en >= newEBounds(i,j,1) & en <= newEBounds(i,j,2);
newEn = en(tmp);
muNew = [mean(newEn); std(newEn)];
oldSpec(i, j, tmp, 2) = polyval(squeeze(fitCoeffs(i,j,:,2)), newEn, [], muFit(i,j,2,:));
newSpec(i, j, tmp, 2) = polyval(squeeze(newSpecCoeffs(i,j,:)), newEn, [], newMu(i,j,:));
end
end
newSpec(newSpec < 0) = 0;
for i = 1:m
for j = 1:n
power = trapz(squeeze(newSpec(i,j,:,1)), squeeze(newSpec(i,j,:,2)));
scalefactor = newPhotonDist(j,i) / power;
newSpec(i,j,:,2) = newSpec(i,j,:,2) * scalefactor;
end
end
% Identify energy range for E_good photons
logicalIndices = (en < E_max) & (en > E_min);
for radius = 1:50
% Get photons within radius of aperture
newSpecAperture = squeeze(circlePixels(:,:,radius)) .* newSpec;
% Get total integrated spectrum within aperture
integratedSpectrum(:,pp,radius) = squeeze(sum(newSpecAperture(:,:,:,2), [1,2]));
% Get integrated spectrum of photons that meet E_good requirements
newSpecGood(logicalIndices,pp,radius) = squeeze(sum(newSpecAperture(:,:,logicalIndices,2), [1,2]));
flux(pp,radius) = trapz(en, integratedSpectrum(:,pp,radius));
[~,temp] = max(integratedSpectrum(:,pp,radius));
fwhmTracker(pp,radius) = fwhm(squeeze(newSpec(1,1,:,1)), squeeze(integratedSpectrum(:,pp,radius)))./ en(temp) ;
end
end
%Find total number of "good" photons at each aperture, at each energy
E_good = zeros(size(newSpecGood,2),radius);
E_bad = E_good;
for i = steps
for radius = 1:50
temporary = eSTART + (pp - 1) * deltaE;
E_good(i,radius) = trapz(linspace(((i+69) * .75), (i+69) + 2, 1000), newSpecGood(:,i,radius));
E_bad(i,radius) = trapz(linspace(((i+69) * .75), (i+69) + 2, 1000), integratedSpectrum(:,i,radius)) - E_good(i,radius);
end
end
%% SEC 6. Find minimum energy bandwidth annular aperture
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Definitely takes longer than it needs to, as it's a very "dumb" scan, but
% it gets the job done.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize variables
en = zeros(1,1000);
newSpec = zeros(m, n, length(en), 2);
newSpecCoeffs = zeros(m, n, polyOrder+1);
newFWONEM = zeros(m, n);
newMeanEnergy = zeros(m, n);
newPhotonDist = zeros(m, n);
newEBounds = zeros(m, n, 2);
newMu = zeros(m,n,2);
circlePixels= zeros(m,n,51); circleBlocks = zeros(m,n,51);
% Create circle mask
centerX = ceil(m / 2);
centerY = ceil(m / 2);
for radius = 1:51
[columnsInImage, rowsInImage] = meshgrid(1:m, 1:n);
circlePixels(:,:,radius) = (rowsInImage - centerY).^2 ...
+ (columnsInImage - centerX).^2 <= (radius-1).^2;
end
circleBlock = ~circlePixels;
% Define bandwidth of interest
E_center = 72;
E_halfWidth = E_center * .02;
E_max = E_center + E_halfWidth;
E_min = E_center - E_halfWidth;
% SET start energy and end energy such that eEND > eSTART
eSTART = 70;
eEND = 80;
% SET number of steps
steps = 1:20;
% Calculates step size in energy
deltaE = (eEND - eSTART) / length(steps);
fwhmTracker = zeros(length(steps),51,51);
integratedSpectrum = zeros(1000,length(steps),51,51);
newSpecGood = integratedSpectrum;
E_good = zeros(size(newSpecGood,2),51,51);
E_bad = E_good;
for pp = steps
predictedEnergy = eSTART + (pp - 1) * deltaE;
en = linspace((predictedEnergy * .75), predictedEnergy + 2, 1000);
for i = 1:m
for j = 1:n
newSpec(i, j, :, 1) = en;
oldSpec(i, j, :, 1) = en;
newFWONEM(i,j) = polyval(squeeze(predictCoeffs(i,j,:,1)), predictedEnergy, [], mu(i,j,1,:));
newMu(i,j,1) = polyval(squeeze(muPredict(i,j,:,1)), predictedEnergy);
newMu(i,j,2) = polyval(squeeze(muPredict(i,j,:,2)), predictedEnergy);
newMeanEnergy(i,j) = polyval(squeeze(predictCoeffs(i,j,:,2)), predictedEnergy, [], mu(i,j,2,:));
newPhotonDist(i,j) = polyval(squeeze(predictCoeffs(i,j,:,3)), predictedEnergy, [], mu(i,j,3,:));
newEBounds(i,j,1) = polyval(squeeze(predictEBounds(i,j,:,1)), predictedEnergy, [], muBounds(i,j,1,:));
newEBounds(i,j,2) = polyval(squeeze(predictEBounds(i,j,:,2)), predictedEnergy, [], muBounds(i,j,2,:));
for l = 1:polyOrder + 1
newSpecCoeffs(i,j,l) = polyval(squeeze(polyOnPoly(i,j,l,:)), predictedEnergy);
end
tmp = en >= newEBounds(i,j,1) & en <= newEBounds(i,j,2);
newEn = en(tmp);
muNew = [mean(newEn); std(newEn)];
newSpec(i, j, tmp, 2) = polyval(squeeze(newSpecCoeffs(i,j,:)), newEn, [], newMu(i,j,:));
end
end
newSpec(newSpec < 0) = 0;
for i = 1:m
for j = 1:n
power = trapz(squeeze(newSpec(i,j,:,1)), squeeze(newSpec(i,j,:,2)));
scalefactor = newPhotonDist(j,i) / power;
newSpec(i,j,:,2) = newSpec(i,j,:,2) * scalefactor;
end
end
% Identify energy range for E_good photons
logicalIndices = (en <= E_max) & (en >= E_min);
%Find max pixel radius that no longer contains any E_good photons
goodMap = get2Dfrom4D(newSpec(:,:,logicalIndices,:));
[row, col] = find(goodMap);
if isempty(find(goodMap,1)) == 1
continue
end
radiusMax = max([max(abs(51-col)), max(abs(51-row))]);
radiusMin = floor(min(sqrt( (row - 51).^2 + (col - 51).^2)));
for radius = radiusMin+1:radiusMax+1
for radius2 = radiusMin+1:radiusMax+1
if radius2 > radius
continue
end
% Get photons within radius of aperture
newSpecAperture = squeeze(circlePixels(:,:,radius)) .* ...
squeeze(circleBlock(:,:,radius2)) .* newSpec;
if sum(newSpecAperture(:,:,:,2)) == 0
continue
end
% Get total integrated spectrum within aperture
%%% NOTE: This is only valid when mrad spacing is conserved for
%%% both anchor and generated distributions
integratedSpectrum(:,pp,radius,radius2) = squeeze(sum(newSpecAperture(:,:,:,2), [1,2]));
% Get integrated spectrum of photons that meet E_good requirements
newSpecGood(logicalIndices,pp,radius,radius2) = squeeze(sum(newSpecAperture(:,:,logicalIndices,2), [1,2]));
% Define E_good and E_bad
E_good(pp,radius,radius2) = trapz(en, newSpecGood(:,pp,radius,radius2).');
E_bad(pp,radius,radius2) = trapz(en, ...
integratedSpectrum(:,pp,radius,radius2)) - E_good(pp,radius,radius2);
end
end
end