Skip to content

Commit f5c8cf5

Browse files
committed
ptspec: fix pT region for model and cocktail
1 parent 6d754d1 commit f5c8cf5

File tree

1 file changed

+32
-24
lines changed

1 file changed

+32
-24
lines changed

pyana/examples/gp_ptspec.py

Lines changed: 32 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ def getSubplotTitle(mn, mr):
3131

3232
def gp_ptspec():
3333
"""example for a 2D-panel plot (TODO)"""
34-
fenergies = ['19', '27', '39', '62']#, '200']
34+
fenergies = ['19', '27', '39', '62', '200']
3535
nen = len(fenergies)
3636
#mee_keys = ['pi0', 'LMR', 'omega', 'phi', 'IMR', 'jpsi']
3737
mee_keys = ['LMR', ]
@@ -55,7 +55,7 @@ def gp_ptspec():
5555
lmr_label = 'LMR: %g < M_{ee} < %g GeV/c^{2}' % (
5656
mee_range_split[0], mee_range_split[1]
5757
)
58-
if energy == '200': continue
58+
#if energy == '200': continue
5959
if mee_name not in mee_keys: continue
6060
mee_dict[mee_name] = mee_range
6161
data[filebase] = np.loadtxt(open(file_url, 'rb'))
@@ -64,12 +64,15 @@ def gp_ptspec():
6464
data[filebase] = data[filebase][:-1] # skip mT<0.4 point
6565
if energy == '200': data[filebase][:,(1,3,4)] /= 0.5
6666
# calculate average pT first
67-
pTs = data[filebase][:,0]
68-
probs = unp.uarray(data[filebase][:,1], data[filebase][:,3]) # dN/pT
67+
mask = (data[filebase][:,0] > 0.4) & (data[filebase][:,0] < 2.)
68+
avpt_data = data[filebase][mask]
69+
pTs = avpt_data[:,0]
70+
wghts = avpt_data[:,1]
71+
probs = unp.uarray(avpt_data[:,1], avpt_data[:,3]) # dN/pT
6972
probs /= umath.fsum(probs) # probabilities
7073
avpt = umath.fsum(pTs*probs)
7174
logging.info(('%s: {} %g' % (
72-
filebase, np.average(pTs[:-1], weights = data[filebase][:-1,1])
75+
filebase, np.average(pTs, weights = wghts)
7376
)).format(avpt)) # TODO: syst. uncertainties
7477
# save datapoint for average pT and append to yvalsPt for yaxis range
7578
dp = [ float(getEnergy4Key(energy)), avpt.nominal_value, 0., avpt.std_dev, 0. ]
@@ -146,28 +149,30 @@ def gp_ptspec():
146149
# arrow_bar = 0.002, layout = '3x2'
147150
#)
148151
#make plot for LMR spectra only
149-
lmr_key = getSubplotTitle('LMR', '0.4-0.76') # 0.4 not for 200 GeV! skipping above!
152+
lmr_key = getSubplotTitle('LMR', '0.4-0.76')
153+
if energy == '200':
154+
lmr_key = getSubplotTitle('LMR', '0.3-0.76')
150155
pseudo_point = np.array([[-1,0,0,0,0]])
151156
model_titles = ['cocktail + model', 'cocktail', 'in-medium', 'QGP']
152157
model_props = [
153158
'with lines lc %s lw 5 lt %d' % (default_colors[-2], i+1)
154159
for i in xrange(len(model_titles))
155160
]
156-
make_plot(
157-
data = dpt_dict[lmr_key][0] + [ pseudo_point ] * len(model_titles),
158-
properties = dpt_dict[lmr_key][1] + model_props,
159-
titles = dpt_dict[lmr_key][2] + model_titles,
160-
name = os.path.join(outDir, 'ptspecLMR'),
161-
ylabel = '1/N@_{mb}^{evt} d^{2}N@_{ee}^{acc.}/dp_{T}dM_{ee} (c^3/GeV^2)',
162-
xlabel = 'dielectron transverse momentum, p_{T} (GeV/c)',
163-
ylog = True, xr = [0, 2.0], yr = [1e-8, 100],
164-
lmargin = 0.15, bmargin = 0.08, rmargin = 0.98, tmargin = 0.84,
165-
key = ['maxrows 4', 'samplen 0.7', 'width -2', 'at graph 1.,1.2'],
166-
arrow_bar = 0.005, size = '10in,13in',
167-
labels = {
168-
'stat. errors only': [0.7,0.95,False], lmr_label: [0.05,0.03,False]
169-
}
170-
)
161+
#make_plot(
162+
# data = dpt_dict[lmr_key][0] + [ pseudo_point ] * len(model_titles),
163+
# properties = dpt_dict[lmr_key][1] + model_props,
164+
# titles = dpt_dict[lmr_key][2] + model_titles,
165+
# name = os.path.join(outDir, 'ptspecLMR'),
166+
# ylabel = '1/N@_{mb}^{evt} d^{2}N@_{ee}^{acc.}/dp_{T}dM_{ee} (c^3/GeV^2)',
167+
# xlabel = 'dielectron transverse momentum, p_{T} (GeV/c)',
168+
# ylog = True, xr = [0, 2.0], yr = [1e-8, 100],
169+
# lmargin = 0.15, bmargin = 0.08, rmargin = 0.98, tmargin = 0.84,
170+
# key = ['maxrows 4', 'samplen 0.7', 'width -2', 'at graph 1.,1.2'],
171+
# arrow_bar = 0.005, size = '10in,13in',
172+
# labels = {
173+
# 'stat. errors only': [0.7,0.95,False], lmr_label: [0.05,0.03,False]
174+
# }
175+
#)
171176
# make mean pt plot
172177
yMinPt, yMaxPt = 0.95*min(yvalsPt), 1.05*max(yvalsPt)
173178
#make_plot(
@@ -202,16 +207,19 @@ def gp_ptspec():
202207
# make mean pt plot for LMR only
203208
make_plot(
204209
data = [
205-
np.array(data_avpt['LMR_c']),
210+
#np.array(data_avpt['LMR_c']),
206211
np.array(data_avpt['LMR_m']),
207212
np.array(data_avpt['LMR'])
208213
],
209214
properties = [
215+
#'with lines lt 2 lw 4 lc %s' % default_colors[0],
210216
'with lines lt 1 lw 4 lc %s' % default_colors[0],
211-
'with lines lt 2 lw 4 lc %s' % default_colors[0],
212217
'lt 1 lw 4 ps 1.5 lc %s pt 18' % default_colors[0]
213218
],
214-
titles = [ 'cocktail', '+medium', getMeeLabel('data') ],
219+
titles = [
220+
#'cocktail',
221+
'model', getMeeLabel('data')
222+
],
215223
name = os.path.join(outDir, 'meanPtLMR'),
216224
xlabel = '{/Symbol \326}s_{NN} (GeV)',
217225
ylabel = 'LMR {/Symbol \341}p_{T}{/Symbol \361} in STAR Acceptance (GeV/c)',

0 commit comments

Comments
 (0)