-
Notifications
You must be signed in to change notification settings - Fork 397
Open
Description
When train and add with_rcnn: False on config.yml
File "/home/inkremental-3/gitKraken/luminoth/venv/bin/lumi", line 9, in <module>
load_entry_point('luminoth', 'console_scripts', 'lumi')()
File "/home/inkremental-3/gitKraken/luminoth/venv/lib/python3.5/site-packages/click/core.py", line 722, in __call__
return self.main(*args, **kwargs)
File "/home/inkremental-3/gitKraken/luminoth/venv/lib/python3.5/site-packages/click/core.py", line 697, in main
rv = self.invoke(ctx)
File "/home/inkremental-3/gitKraken/luminoth/venv/lib/python3.5/site-packages/click/core.py", line 1066, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/inkremental-3/gitKraken/luminoth/venv/lib/python3.5/site-packages/click/core.py", line 895, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/inkremental-3/gitKraken/luminoth/venv/lib/python3.5/site-packages/click/core.py", line 535, in invoke
return callback(*args, **kwargs)
File "/home/inkremental-3/gitKraken/luminoth/luminoth/train.py", line 306, in train
config, environment=environment
File "/home/inkremental-3/gitKraken/luminoth/luminoth/train.py", line 103, in run
name='optimizer_slots_initializer'
File "/home/inkremental-3/gitKraken/luminoth/venv/lib/python3.5/site-packages/tensorflow/python/ops/variables.py", line 2566, in variables_initializer
return control_flow_ops.group(*[v.initializer for v in var_list], name=name)
File "/home/inkremental-3/gitKraken/luminoth/venv/lib/python3.5/site-packages/tensorflow/python/ops/variables.py", line 2566, in <listcomp>
return control_flow_ops.group(*[v.initializer for v in var_list], name=name)
AttributeError: 'NoneType' object has no attribute 'initializer'
Config.yml:
train:
# Run on debug mode (which enables more logging).
debug: True
job_dir: jobs/
run_name: train-dipstick-frcnn-npn
dataset:
type: object_detection
# From which directory to read the dataset.
dir: dataset/pascal/tf
# Which split of tfrecords to look for.
model:
type: fasterrcnn
network:
# Total number of classes to predict.
num_classes: 20
# Use RCNN or just RPN.
with_rcnn: False