-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrank.py
275 lines (206 loc) · 8.06 KB
/
rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from collections import defaultdict
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from typing import Optional, Literal, List, Union, Dict
import pandas as pd
from pydantic import BaseModel, Field, RootModel
from rich.table import Table
from rich.console import Console
class SourceReference(BaseModel):
pdf_sha1: str = Field(..., description="SHA1 hash of the PDF file")
page_index: int = Field(..., description="Zero-based physical page number in the PDF file")
Value = Union[float, str, bool, List[str], Literal["N/A"]]
Schema = Literal["number", "name", "boolean", "names"]
class Answer(BaseModel):
question_text: Optional[str]
kind: Optional[Schema]
value: Value
references: List[SourceReference] = []
# extended gt data
gt_value: Optional[List[Value]] = None
gt_refs: List[List[str]] = None
debug: List[str] = None
class AnswerSubmission(BaseModel):
answers: List[Answer] = Field(..., description="List of answers to the questions")
team_email: str = Field(..., description="Email that your team used to register for the challenge")
submission_name: str = Field(..., description="Unique name of the submission (e.g. experiment name)")
signature: str
file_name: str = ""
time: str = ""
class CanonicData(BaseModel):
kind: Schema
answers: List[str]
reference_pools: List[List[str]]
class CanonicFile(RootModel):
root: Dict[str, CanonicData]
@dataclass
class Ranking:
submission: AnswerSubmission
missing: int = 0
missing_ref: int = 0
no_rank: int = 0
score: float = 0
val_score: float = 0
ref_score: float = 0
elapsed_hours: float = 0
DIR = Path(__file__).parent / "round2"
def load_submissions() -> List[AnswerSubmission]:
files = (DIR / "submissions").glob("*.json")
submissions = []
for f in files:
v = AnswerSubmission.model_validate_json(f.read_text())
v.file_name = f.name
submissions.append(v)
return submissions
def compare(schema: Schema, actual: str, predicted: Value) -> float:
if predicted == "N/A" and actual == "N/A":
return 1.0
if actual == "N/A" or predicted == "N/A":
return 0.0
if schema == "number":
try:
actual = float(actual)
predicted = float(predicted)
except ValueError:
return 0.0
# if answer is within 1 % of the expected value, give full score
if abs(predicted - actual) < 0.01 * actual:
return 1.0
return 0.0
elif schema == "boolean":
if str(actual).lower() == str(predicted).lower():
return 1.0
else:
return 0.0
elif schema == "name":
if str(actual).strip().lower() == str(predicted).strip().lower():
return 1.0
else:
return 0.0
elif schema == "names":
# ensure that predicted is list of strings
if isinstance(predicted, str):
# convert to list of strings by splitting
predicted = predicted.split(",")
# and trip spaces
predicted = [p.strip() for p in predicted]
actual_names = str(actual).strip().lower().split(",")
predicted_names = [str(p).strip().lower() for p in predicted]
# jaqqard distance
intersection = len(set(actual_names).intersection(predicted_names))
union = len(set(actual_names).union(predicted_names))
return 1.0 * intersection / union
else:
raise Exception(f"Unknown schema {schema}")
def load_canonic_answers():
file = DIR / "answers.json"
data = CanonicFile.model_validate_json(file.read_text())
schemas = data.root
console = Console(width=120)
rankings = []
for submission in load_submissions():
stats = defaultdict(int)
index = {a.question_text: a for a in submission.answers}
for q, data in schemas.items():
predicted = index.get(q)
if predicted is None:
stats["missing"] += 1
continue
if not data.answers:
stats["no_rank"] += 1
continue
predicted.gt_value = data.answers
predicted.gt_refs = data.reference_pools
predicted.debug = []
# if we have multiple answers possible, pick the highest score
val_score = max([compare(data.kind, a, predicted.value) for a in data.answers])
# convert answer refs to hash:page format
predicted_refs = [r.pdf_sha1 + ":" + str(r.page_index) for r in predicted.references]
max_ref_score = 1.0
if len(data.reference_pools) == 0 and len(predicted_refs) == 0:
pass
else:
# flatten all pools to one array
expected_refs = []
for expected in data.reference_pools:
expected_refs.extend(expected)
max_ref_score = 1.0
for p in predicted_refs:
if p not in expected_refs:
max_ref_score -= 0.1
for proof_neded in data.reference_pools:
found_proof = len(set(predicted_refs).intersection(proof_neded)) > 0
if not found_proof:
max_ref_score -= 0.25
stats["val_score"] += val_score
ref_score = max(0.0, max_ref_score)
predicted.debug.append(f"Ref_score: {ref_score:.2f}")
stats["ref_score"] += ref_score
predicted.debug.append(f"Score: {val_score}")
val_score = stats["val_score"]
ref_score = stats["ref_score"]
score = (val_score + ref_score / 2.0)
time = datetime.strptime(submission.time, "%Y-%m-%d, %H:%M:%S")
# started = — 27/02/2025, 13:29
started = datetime.strptime("2025-02-27, 12:30", "%Y-%m-%d, %H:%M")
elapsed_hours = (time - started).total_seconds() / 3600.0
rankings.append(Ranking(
submission=submission,
missing=stats["missing"],
missing_ref=stats["missing_refs"],
no_rank=stats["no_rank"],
score=score,
ref_score=ref_score,
val_score=val_score,
elapsed_hours=elapsed_hours
))
# save submission to "ranked" folder
ranked_dir = DIR / "ranked"
# OPTIONAL: save ranked submissions
# ranked_dir.mkdir(exist_ok=True)
# ranked_dir.joinpath(submission.file_name).write_text(
# submission.model_dump_json(indent=2), encoding="utf-8"
# )
# sort by score descending
rankings.sort(key=lambda x: x.score, reverse=True)
# rankings.sort(key=lambda x: x.submission.time)
# now render to table
table = Table(title="Ranking", row_styles=["dim", ""])
table.add_column("Rank", width=15)
table.add_column("Submission", width=40)
table.add_column("Hash", width=20)
table.add_column("R", width=20)
table.add_column("G", width=20)
table.add_column("Score", width=20)
df_records = []
for i, r in enumerate(rankings):
team = r.submission.submission_name
signature = r.submission.signature[:8]
accuracy = 100.0 * r.val_score / (100 - r.no_rank)
table.add_row(
str(i + 1),
team.replace("\n", " "),
r.submission.signature[:8],
f"{r.ref_score:.1f}",
f"{r.val_score:.1f}",
f"{r.score:.1f}",
)
df_records.append({
"rank": i + 1,
"team": team.replace("\n", " "),
"signature": signature,
"R": f"{r.ref_score:.1f}",
"G": f"{r.val_score:.1f}",
"Score": f"{r.score:.1f}",
"Missing": str(r.missing),
"Missing Ref": str(r.missing_ref),
"No rank": str(r.no_rank),
"Val Accuracy": f"{accuracy:.2f} %",
"Elapsed": f"{r.elapsed_hours:.2f}"
})
console.print(table)
df = pd.DataFrame(df_records)
df.to_csv(DIR / "ranking.csv", index=False)
if __name__ == "__main__":
load_canonic_answers()