You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Suppose $f_1(x),f_2(x),\dots,f_n(x)$ are functions of $n$ real variables $x=(x_1,\dots,x_n)$ with continuous second-order partial derivatives everywhere on $\mathbb{R}^n$. Suppose further that there are constants $c_{ij}$ such that $\frac{\partial f_i}{\partial x_j}-\frac{\partial f_j}{\partial x_i}=c_{ij}$ for all $i$ and $j$, $1 \leq i \leq n$, $1 \leq j \leq n$. Prove that there is a function $g(x)$ on $\mathbb{R}^n$ such that $f_i+\partial g/\partial x_i$ is linear for all $i$, $1 \leq i \leq n$. (A linear function is one of the form $a_0+a_1x_1+a_2x_2+\dots+a_nx_n$.)
7
5
-/
8
-
theoremputnam_1986_a5
9
-
(n : ℕ)
10
-
(f : Fin n → ((Fin n → ℝ) → ℝ))
11
-
(xrepl : (Fin n → ℝ) → Fin n → ℝ → (Fin n → ℝ))
12
-
(contdiffx : ((Fin n → ℝ) → ℝ) → Fin n → (Fin n → ℝ) → Prop)
13
-
(partderiv : ((Fin n → ℝ) → ℝ) → Fin n → ((Fin n → ℝ) → ℝ))
14
-
(hpartderiv : partderiv = (fun (func : (Fin n → ℝ) → ℝ) (i : Fin n) => (fun x : Fin n → ℝ => deriv (fun xi : ℝ => func (xrepl x i xi)) (x i))))
15
-
(npos : n ≥ 1)
16
-
(hxrepl : xrepl = (fun (x : Fin n → ℝ) (i : Fin n) (xi : ℝ) => (fun j : Fin n => if j = i then xi else x j)))
17
-
(hcontdiffx : contdiffx = (fun (func : (Fin n → ℝ) → ℝ) (i : Fin n) (x : Fin n → ℝ) => ContDiff ℝ 1 (fun xi : ℝ => func (xrepl x i xi))))
18
-
(hfcontdiff1 : ∀ i : Fin n, ∀ j : Fin n, ∀ x : Fin n → ℝ, contdiffx (f i) j x)
19
-
(hfcontdiff2 : ∀ i : Fin n, ∀ j1 j2 : Fin n, ∀ x : Fin n → ℝ, contdiffx (partderiv (f i) j1) j2 x)
20
-
(hfc : ∃ c : Fin n → Fin n → ℝ, ∀ i j : Fin n, partderiv (f i) j - partderiv (f j) i = (fun x : Fin n → ℝ => c i j))
21
-
: ∃ g : (Fin n → ℝ) → ℝ, ∀ i : Fin n, IsLinearMap ℝ (f i + partderiv g i) :=
22
-
sorry
6
+
theoremputnam_1986_a5'
7
+
(n : ℕ) (hn : 1 ≤ n)
8
+
(f : Fin n → ((Fin n → ℝ) → ℝ))
9
+
(hf : ∀ i, ContDiff ℝ 2 (f i))
10
+
(hf' : ∀ i j : Fin n, ∃ C : ℝ, ∀ x : Fin n → ℝ, fderiv ℝ (f i) x (Pi.single j 1) - fderiv ℝ (f j) x (Pi.single i 1) = C)
11
+
: ∃ g : (Fin n → ℝ) → ℝ, ∀ i : Fin n, IsLinearMap ℝ (λ x ↦ f i x + fderiv ℝ g x (Pi.single i 1)) :=
Let $(x_1,x_2,\dots,x_n)$ be a point chosen at random from the $n$-dimensional region defined by $0<x_1<x_2<\dots<x_n<1$. Let $f$ be a continuous function on $[0,1]$ with $f(1)=0$. Set $x_0=0$ and $x_{n+1}=1$. Show that the expected value of the Riemann sum $\sum_{i=0}^n (x_{i+1}-x_i)f(x_{i+1})$ is $\int_0^1 f(t)P(t)\,dt$, where $P$ is a polynomial of degree $n$, independent of $f$, with $0 \leq P(t) \leq 1$ for $0 \leq t \leq 1$.
8
8
-/
9
-
theoremputnam_1989_b6
10
-
(n : ℕ)
11
-
(Sx : Set (Fin n → ℝ))
12
-
(fprop : (ℝ → ℝ) → Prop)
13
-
(xext : (Fin n → ℝ) → (ℕ → ℝ))
14
-
(fxsum : (ℝ → ℝ) → (Fin n → ℝ) → ℝ)
15
-
(fEV : (ℝ → ℝ) → ℝ)
16
-
(hSx : Sx = {x : Fin n → ℝ | 0 < x ∧ StrictMono x ∧ x < 1})
17
-
(hfprop : fprop = (fun f : ℝ → ℝ => ContinuousOn f (Set.Icc 01) ∧ f 1 = 0))
18
-
(hfxsum : fxsum = (fun (f : ℝ → ℝ) (x : Fin n → ℝ) => ∑ i in Finset.Icc 0 n, ((xext x) (i + 1) - (xext x) i) * f ((xext x) (i + 1))))
19
-
(hfEV : fEV = (fun f : ℝ → ℝ => (∫ x in Sx, fxsum f x) / (∫ x in Sx, 1)))
20
-
(npos : n ≥ 1)
21
-
(hxext : ∀ x : Fin n → ℝ, (xext x) 0 = 0 ∧ (xext x) (n + 1) = 1 ∧ (∀ i : Fin n, (xext x) (i + 1) = x i))
22
-
: ∃ P : Polynomial ℝ, P.degree = n ∧ (∀ t ∈ Set.Icc 01, 0 ≤ P.eval t ∧ P.eval t ≤ 1) ∧ (∀ f : ℝ → ℝ, fprop f → fEV f = (∫ t in Set.Ioo 01, f t * P.eval t)) :=
23
-
sorry
9
+
theoremputnam_1989_b6'
10
+
(n : ℕ) (hn : 0 < n)
11
+
(S : (ℝ → ℝ) → (Fin (n + 2) → Icc (0 : ℝ) 1) → ℝ)
12
+
(hS : ∀ f x, S f x = if StrictMono x ∧ x 0 = 0 ∧ x (-1) = 1then ∑ i in Icc 0 n, (x (i + 1) - x i) * f (x (i + 1)) else0)
13
+
: ∃ P : Polynomial ℝ,
14
+
P.degree = n ∧
15
+
(∀ t ∈ Icc 01, P.eval t ∈ Icc 01) ∧
16
+
(∀ f : ℝ → ℝ,
17
+
f 1 = 0 ∧ ContinuousOn f (Icc 01) →
18
+
𝔼[(↑) ∘ (S f)] = ∫ t in (0)..1, (f t) * (P.eval t)) :=
0 commit comments