forked from UMich-CURLY/tourguide_routing_matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrtoolRoutingSolver.py
307 lines (274 loc) · 14.8 KB
/
OrtoolRoutingSolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import numpy as np
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
import time
class OrtoolRoutingSolver:
def __init__(self, veh_num, node_num, human_num, demand_penalty, time_penalty, time_limit, solver_time_limit = 20):
self.LARGETIME = 1000.0 # A large number that should be larger than any possible time appeared in the optimization problem
self.veh_num = veh_num # The number of agents (robots/vehicles/guides)
self.node_num = node_num # The number of nodes
self.human_num = human_num # The number of human
self.demand_penalty = demand_penalty # The penalty on dropping a POI
self.time_penalty = time_penalty # The penalty on the total time consumption of the tour
if time_limit <= 1: # The time limit of the tours, integer valued
self.time_limit = 300000
else:
self.time_limit = int(time_limit)
self.start_node = self.node_num - 2 # Keep it, the start node is assumed to be No. node_num-2
self.global_penalty = 1.0 # Keep this constant
self.solver_time_limit = int(solver_time_limit) # Time limit for the solver
def optimize_sub(self, edge_time, node_time, z_sol, human_demand_bool, node_seq, route_list = None, flag_verbose = False):
'''
Optimize the routing problem
------------------------------------------------------
z_sol: (human_num, veh_num)
human_demand_bool: (human_num, place_num), i.e. (human_num, node_num - 2)
'''
place_num = self.node_num-2
penalty_mat = np.zeros((self.veh_num, place_num), dtype=np.float64)
result_dict = {}
result_dict['Optimized'] = True
result_dict['Status'] = []
start_time = time.time()
# Create sub-routing model
self.sub_manager = []
self.sub_solver = []
self.sub_solution = []
for i in range(self.veh_num):
a_sub_manager = pywrapcp.RoutingIndexManager(self.node_num-1, 1, self.start_node)
a_sub_solver = pywrapcp.RoutingModel(a_sub_manager)
self.sub_manager.append(a_sub_manager)
self.sub_solver.append(a_sub_solver)
self.sub_solution.append(None)
for k in range(self.veh_num):
for i in range(place_num):
penalty_mat[k, i] = (z_sol[:, k] * human_demand_bool[:, i]).sum()
# print('penalty_mat = ', penalty_mat)
for k in range(self.veh_num):
def temp_distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = self.sub_manager[k].IndexToNode(from_index)
to_node = self.sub_manager[k].IndexToNode(to_index)
if from_node == to_node:
dist_out = 0.0
else:
dist_out = edge_time[k,from_node,to_node] + node_time[k,from_node]
return dist_out
transit_callback_index = self.sub_solver[k].RegisterTransitCallback(temp_distance_callback)
# Define cost of each arc.
self.sub_solver[k].SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Distance constraint.
dimension_name = 'Time'
self.sub_solver[k].AddDimension(
transit_callback_index,
0, # no slack
self.time_limit, # vehicle maximum travel distance
True, # start cumul to zero
dimension_name)
# distance_dimension = self.sub_solver[k].GetDimensionOrDie(dimension_name)
# temp_penalty = int(self.global_penalty * self.time_penalty)
# distance_dimension.SetGlobalSpanCostCoefficient(temp_penalty)
# Allow to drop nodes.
for i in range(place_num):
# temp_penalty = int(penalty_mat[k, i] * self.demand_penalty)
temp_penalty = int(penalty_mat[k, i] * self.demand_penalty * self.global_penalty)
self.sub_solver[k].AddDisjunction([self.sub_manager[k].NodeToIndex(i)], temp_penalty)
# Add sequence constraints, see the references in README.md
if node_seq is not None:
self.add_seq_constraint(self.sub_solver[k], self.sub_manager[k], node_seq)
# Solve the problem.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.time_limit.seconds = self.solver_time_limit
if (route_list is not None) and len(route_list[k]) > 2:
initial_solution = self.sub_solver[k].ReadAssignmentFromRoutes([route_list[k][1:-1]], True)
a_sub_solution = self.sub_solver[k].SolveFromAssignmentWithParameters(initial_solution, search_parameters)
else:
search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
a_sub_solution = self.sub_solver[k].SolveWithParameters(search_parameters)
# Construct the result dictionary
result_dict['Status'].append(self.sub_solver[k].status())
if self.sub_solver[k].status() != 1:
result_dict['Optimized'] = False
continue
self.sub_solution[k] = a_sub_solution
end_time = time.time()
result_dict['Runtime'] = end_time - start_time
# result_dict['IterCount'] = self.solver.iterations()
# result_dict['NodeCount'] = self.solver.nodes()
if flag_verbose:
print('Solution found: %d' % result_dict['Optimized'])
print('Optimization status:', result_dict['Status'])
print('Problem solved in %f seconds' % result_dict['Runtime'])
flag_success = result_dict['Optimized']
return flag_success, result_dict
def set_model(self, edge_time, node_time, node_seq = None):
# Create Routing Model.
self.manager = pywrapcp.RoutingIndexManager(self.node_num-1, self.veh_num, self.start_node)
self.solver = pywrapcp.RoutingModel(self.manager)
self.solution = None
distance_matrix = edge_time[0, :self.node_num-1, :self.node_num-1] + 0
distance_matrix += node_time[0, :self.node_num-1].reshape(self.node_num-1, 1)
self.data = {}
self.data['edge_time'] = edge_time
self.data['node_time'] = node_time
self.data['distance_matrix'] = distance_matrix
transit_callback_index = self.solver.RegisterTransitCallback(self.distance_callback)
# Define cost of each arc.
self.solver.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Add Distance constraint.
dimension_name = 'Time'
self.solver.AddDimension(
transit_callback_index,
0, # no slack
300000, # vehicle maximum travel distance
True, # start cumul to zero
dimension_name)
distance_dimension = self.solver.GetDimensionOrDie(dimension_name)
temp_penalty = int(self.global_penalty * self.time_penalty)
distance_dimension.SetGlobalSpanCostCoefficient(temp_penalty)
def add_seq_constraint(self, solver, manager, node_seq):
distance_dimension = solver.GetDimensionOrDie('Time')
for i_seq in range(len(node_seq)):
for i_node in range(len(node_seq[i_seq]) - 1):
node_i = node_seq[i_seq][i_node]
node_j = node_seq[i_seq][i_node+1]
nodeid_i = manager.NodeToIndex(node_i)
nodeid_j = manager.NodeToIndex(node_j)
# print('node:', node_i, node_j, 'index:', nodeid_i, nodeid_j)
# solver.AddPickupAndDelivery(nodeid_i, nodeid_j)
# solver.solver().Add(solver.VehicleVar(nodeid_i) == solver.VehicleVar(nodeid_j))
# solver.solver().Add(distance_dimension.CumulVar(nodeid_i) <= distance_dimension.CumulVar(nodeid_j))
# j active is based on i active
solver.solver().Add(solver.ActiveVar(nodeid_j) <= solver.ActiveVar(nodeid_i))
# j's time is after i's time (visit i before j)
solver.solver().Add(distance_dimension.CumulVar(nodeid_i) <= distance_dimension.CumulVar(nodeid_j))
# i and j should be using the same vehicle
constraintActive = solver.ActiveVar(nodeid_i) * solver.ActiveVar(nodeid_j)
solver.solver().Add(constraintActive * (solver.VehicleVar(nodeid_i) - solver.VehicleVar(nodeid_j)) == 0 )
def optimize(self, flag_verbose = False):
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.time_limit.seconds = self.solver_time_limit
search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
# Solve the problem.
start_time = time.time()
self.solution = self.solver.SolveWithParameters(search_parameters)
end_time = time.time()
# Construct the result dictionary
result_dict = {}
result_dict['Optimized'] = self.solver.status() == 1
result_dict['Status'] = self.solver.status()
result_dict['Runtime'] = end_time - start_time
# result_dict['IterCount'] = self.solver.iterations()
# result_dict['NodeCount'] = self.solver.nodes()
# Print the results
if flag_verbose:
print('Solution found: %d' % result_dict['Optimized'])
print('Optimization status: %d' % result_dict['Status'])
print('Problem solved in %f seconds' % result_dict['Runtime'])
# print('Problem solved in %d iterations' % result_dict['IterCount'])
# print('Problem solved in %d branch-and-bound nodes' % result_dict['NodeCount'])
return result_dict
def distance_callback(self, from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = self.manager.IndexToNode(from_index)
to_node = self.manager.IndexToNode(to_index)
if from_node == to_node:
dist_out = 0.0
else:
# dist_out = self.data['distance_matrix'][from_node][to_node]
dist_out = self.data['edge_time'][0,from_node,to_node] + self.data['node_time'][0,from_node]
# print('dist_out = ', dist_out)
return dist_out
def get_random_plan(self, edge_time, node_time):
# Initialize a random routing plan
place_num = self.node_num-2
place_perm = np.random.permutation(place_num)
route_node_list = []
team_list = [[] for i in range(self.node_num-2)]
y_sol = np.zeros((self.veh_num, self.node_num-2), dtype=np.float64)
for i_place in range(place_num):
i_veh = i_place % self.veh_num
node_id = place_perm[i_place]
if i_place == i_veh:
route_node_list.append([self.start_node])
route_node_list[i_veh].append(node_id)
team_list[node_id].append(i_veh)
y_sol[i_veh, node_id] = 1.0
for i_veh in range(self.veh_num):
route_node_list[i_veh].append(self.start_node)
route_time_list = []
for i_veh in range(self.veh_num):
assert len(route_node_list) > 2, 'OrtoolRoutingSolver.get_random_plan: An empty route!'
route_time = 0.0
route_time_list.append([route_time])
for i_node in range(len(route_node_list[i_veh]) - 1):
node_i = route_node_list[i_veh][i_node]
node_j = route_node_list[i_veh][i_node+1]
route_time += edge_time[i_veh,node_i,node_j] + node_time[i_veh,node_i]
route_time_list[i_veh].append(route_time)
return route_node_list, route_time_list, team_list, y_sol
def get_plan(self, flag_sub_solver = False, flag_verbose = False):
# Output the plans
"""Prints solution on console."""
route_node_list = []
route_time_list = []
team_list = [[] for i in range(self.node_num-2)]
if not flag_sub_solver:
solution = self.solution
solver = self.solver
manager = self.manager
time_dimension = solver.GetDimensionOrDie('Time')
if flag_verbose:
print(f'Objective: {solution.ObjectiveValue()}')
total_max_time = 0
for vehicle_id in range(self.veh_num):
route_node = []
route_time = []
if flag_sub_solver:
solution = self.sub_solution[vehicle_id]
solver = self.sub_solver[vehicle_id]
manager = self.sub_manager[vehicle_id]
index = solver.Start(0)
time_dimension = solver.GetDimensionOrDie('Time')
else:
index = solver.Start(vehicle_id)
plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
while not solver.IsEnd(index):
time_var = time_dimension.CumulVar(index)
node_id = manager.IndexToNode(index)
temp_min_time = solution.Min(time_var)
temp_max_time = solution.Max(time_var)
plan_output += '{0} Time({1},{2}) -> '.format(node_id, temp_min_time, temp_max_time)
index = solution.Value(solver.NextVar(index))
route_node.append(node_id)
route_time.append(temp_min_time)
if node_id < self.start_node:
team_list[node_id].append(vehicle_id)
time_var = time_dimension.CumulVar(index)
node_id = manager.IndexToNode(index)
temp_min_time = solution.Min(time_var)
temp_max_time = solution.Max(time_var)
plan_output += '{0} Time({1},{2})\n'.format(node_id, temp_min_time, temp_max_time)
plan_output += 'Time of the route: {}min\n'.format(temp_min_time)
if temp_min_time > total_max_time:
total_max_time = temp_min_time
route_node.append(node_id)
route_time.append(temp_min_time)
route_node_list.append(route_node)
route_time_list.append(route_time)
if flag_verbose:
print(plan_output)
print('time_var = ', temp_min_time)
if flag_verbose:
print('Max time of all routes: {}min'.format(total_max_time))
y_sol = np.zeros((self.veh_num, self.node_num-2), dtype=np.float64)
for i in range(self.node_num-2):
for k in team_list[i]:
y_sol[k,i] = 1.0
# print(route_node_list)
# print(route_time_list)
# print(team_list)
return route_node_list, route_time_list, team_list, y_sol