-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqdsp.py
151 lines (121 loc) · 5.25 KB
/
qdsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# V1.1
import PyQt5
from PyQt5 import QtCore, QtGui, QtWidgets, QtSerialPort
from PyQt5.QtSerialPort import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
import numpy as np
from numpy.core.fromnumeric import argsort
from scipy.ndimage import shift
class QDSPInterface(QObject):
dc_offse_cancled = pyqtSignal(str)
class QDSP(QObject):
def __init__(self, parent=None):
super().__init__(parent)
self.channels = {}
self.time_axis = {}
self.filtered = {}
self.filter = {}
self.args = {}
self.sample_counter = {}
self.dc_remove = {}
self.dc_offset = {}
self.max_window = 100
self.enabled = {}
self.interface = QDSPInterface()
self.monotonic = {}
self.increasing_only = False
def add_channel(self, channel, max_window=100):
self.max_window = max_window
self.channels[channel] = {'raw':np.zeros((max_window,), dtype=float)}
self.time_axis[channel] = np.arange(max_window, dtype=float)
self.sample_counter[channel] = 0
self.dc_remove[channel] = False
self.dc_offset[channel] = np.nan
self.enabled[channel] = True
self.monotonic[channel] = None
def get_channel(self,channel, deepcopy = False):
arr = self.channels[channel].get('filtered', None)
if arr is None:
arr = self.channels[channel].get('raw', None)
t = self.time_axis.get(channel, None)
return np.copy(arr) if deepcopy else arr, t
def set_channel(self, channel:str, val):
if not self.enabled[channel]:
r_val = val - self.dc_offset[channel] if self.dc_remove.get(channel, False) else val
return r_val
r_val = val
n = len(val) if type(val) == list else 1
self.sample_counter[channel] +=1
if n == 1:
if self.channels[channel].get('request_dc_remove', False):
self.remove_dc(channel)
val = val - self.dc_offset[channel] if self.dc_remove.get(channel, False) else val
r_val = val
self.channels[channel]['raw'] = shift(self.channels[channel]['raw'], -n, cval=val)
# filtering
if self.filtered.get(channel, False):
if self.filter[channel] == 'maf_fir':
r_val = self.maf_filter_fir(channel, val)
else:
self.channels[channel]['raw'] = shift(self.channels[channel]['raw'], -n, cval=np.nan)
for i in range(n):
self.channels[channel][1,-(n+1)] = val[-(n+1)]
return r_val
def set_filter(self, channel, type='maf_fir',**kargs):
self.filtered[channel] = True
self.filter[channel] = type
max_window = self.channels[channel]['raw'].shape
self.channels[channel]['filtered'] = np.zeros(max_window, dtype=float)
self.args = kargs
def maf_filter_fir(self, channel, val):
order = self.args['order']
fval = np.average(self.channels[channel]['raw'][-order:])
self.channels[channel]['filtered'] = shift(self.channels[channel]['filtered'], -1, cval=fval)
return fval
def set_dc_removal(self, channel):
self.channels[channel]['request_dc_remove'] = True
def remove_dc(self, channel):
if not self.channels[channel]['request_dc_remove']:
return
target = self.channels[channel]['raw']# self.channels[channel]['filtered'] if self.filtered.get(channel, False) else self.channels[channel]['raw']
N_SAMPLES = target.shape[-1]//2
if self.sample_counter[channel] < N_SAMPLES:
self.dc_remove[channel] = False
return
elif self.dc_remove[channel]:
return
else:
dc = np.average(target[-N_SAMPLES:])
print(f"Removing dc offset of {dc}")
self.dc_offset[channel] = dc
self.dc_remove[channel] = True
self.channels[channel]['request_dc_remove'] = False
self.interface.dc_offse_cancled.emit(channel)
def reset(self):
for channel, v in self.channels.items():
self.sample_counter[channel] = 0
self.monotonic[channel] = None
# self.dc_remove[channel] = False
# self.dc_offset[channel] = np.nan
# self.filtered[channel] = False
v['raw'] = np.zeros((self.max_window,), dtype=float)
arr = v.get('filtered', None)
if arr is not None:
v['filtered'] = np.zeros((self.max_window,), dtype=float)
# if v.get('request_dc_remove', False):
# v['filtered'] = False
def set_enabled(self, channel, is_enabled=True):
if channel == 'all':
for k,v in self.channels.items():
self.enabled[k] = is_enabled
else:
self.enabled[channel] = is_enabled
def set_monotonic(self, channel, **kwargs):
if 'increasing' in kwargs.keys():
self.monotonic[channel] = 'increasing'
elif 'decreasing' in kwargs.keys():
self.monotonic[channel] = 'decreasing'
elif 'off' in kwargs.keys():
self.monotonic[channel] = None