diff --git a/Quiz_3_Review.ipynb b/Quiz_3_Review.ipynb new file mode 100644 index 0000000..73d5ce3 --- /dev/null +++ b/Quiz_3_Review.ipynb @@ -0,0 +1,129 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quiz 3 Review\n", + "\n", + "### Problem 1 \n", + "3 points\n", + "\n", + "$$\\int_2^\\infty e^{-3x} dx$$\n", + "\n", + "$$= \\lim_{t\\to \\infty} \\int_2^t e^{-3x} dx$$\n", + "\n", + "$$= \\lim_{t\\to \\infty} \\left[ \\frac{e^{-3x}}{-3} \\right]_{2}^{t}$$\n", + "\n", + "$$= -\\frac{1}{3} \\lim_{t\\to \\infty} \\left( e^{-3t} - e^{-6} \\right)$$\n", + "\n", + "$$= -\\frac{1}{3} \\left( 0 - \\frac{1}{e^6} \\right)$$\n", + "\n", + "$$\\text{Solution }= \\frac{1}{3e^6}$$\n", + "\n", + "__Converges__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Problem 2\n", + "3 points\n", + "\n", + "$$\\int_0^1 \\frac{3}{x^-5} dx$$\n", + "\n", + "$$= \\lim_{t\\to 0^{+}} \\int_t^1 3x^5 dx$$\n", + "\n", + "$$= \\lim_{t\\to 0^{+}} \\left[ \\frac{3x^{-4}}{-4} \\right]_{t}^{1}$$\n", + "\n", + "$$= \\lim_{t\\to 0^{+}} \\left( \\frac{-3}{4} + \\frac{3}{4t^4} \\right)$$\n", + "\n", + "$$\\text{Solution }= \\infty$$\n", + "\n", + "__Diverges__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEPCAYAAAC5sYRSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG0hJREFUeJzt3XuUVfV99/H3l7sgOiCKEElHvFS0xMELiYpPx5gnlaht\nzOM1TVykaVzpimlMYvo8yVp9bFbWStqVptrVrNWkMRUbn6oxNAZikqLCUSmKlzBcghcsYlBQRAS5\nhdt8nz/2GX6HYWaYzZy9f/vs83mtdRa/fc7I/vJ1+M7mc/bZ29wdEREpl0GxCxARkfrTcBcRKSEN\ndxGREtJwFxEpIQ13EZES0nAXESmhIVnvwMzWAu8C+4G97j49632KiDS7zIc74EC7u2/OYV8iIkJ+\nsYzltB8RESGf4e7AI2b2rJl9Jof9iYg0vTximYvcfYOZHQ88bGYvuPsTOexXRKRpZT7c3X1D9de3\nzOynwHTgCQAz04VtRESOgLv3GXdnGsuY2UgzG11djwI+DKyo/Rp3b4rHP/6jkyRUzs03H/r6bbfd\nFr3GojzUC/VCvej70R9ZH7mPB35qZl37+n/uPj/jfRbS6NFh/e67h76+du3a3GopOvUiUC8C9SKd\nTIe7u78CtGW5j0ZxzDFh3dNwFxGpJ31CNSe1w33btkNfnzVrVm61FJ16EagXgXqRjvU3v8lk52Ye\nc/95euopuOCCZH3++fD003HrEZHGZWZ4zDdUJThcLFOpVHKrpejUi0C9CNSLdDTcc3K4WEZEpJ4U\ny+Tk3Xfh2GOT9ahRsH173HpEpHH1J5bRcM9JZycMGQJdf9y9e5NtEZG0lLkXyKBB4cgdYOvWg19X\nnhioF4F6EagX6Wi456iv4S4iUk+KZXLU1gbLliXr556Dc86JW4+INCbFMgWjI3cRyYuGe45aWsJ6\ny5aDX1OeGKgXgXoRqBfpaLjnSEfuIpIXDfcc9XXk3t7enmstRaZeBOpFoF6ko+GeIx25i0heNNxz\npMy9f9SLQL0I1It0NNxzpCN3EcmLznPP0U9+Atdck6yvugr+4z/i1iMijUnnuReMjtxFJC8a7jlS\n5t4/6kWgXgTqRToa7jnSkbuI5EWZe442boTx45P1uHHw1ltx6xGRxqTMvWBqj9y3bAnXdhcRqTcN\n9xwNHw4jRiTrfftg167wmvLEQL0I1ItAvUhHwz1n3Y/eRUSyoMw9Z2ecAS++mKxXrYIpU+LWIyKN\nR5l7AenIXUTyoOGes9pz3d95J6yVJwbqRaBeBOpFOhruORs7Nqxrh7uISD1puOdszJiwrh3uulZ1\noF4E6kWgXqSj4Z6z2iP3zZvj1SEi5abhnrPehrvyxEC9CNSLQL1IR8M9Z73FMiIi9aTz3HP2s5/B\nRz+arK+4AubNi1uPiDQenedeQMrcRSQPGu456y2WUZ4YqBeBehGoF+louOdMR+4ikofMM3czGww8\nC7zm7ld2e63pMvddu2DkyGQ9dCjs3g3WZ3ImInKwomTuXwBWAc01xXtx1FHhsr9798LOnXHrEZFy\nynS4m9lJwEeAOwEdn1b1FM0oTwzUi0C9CNSLdLI+cr8d+ArQmfF+GopydxHJ2pCsfmMzuwLY6O5L\nzay9t6+bNWsWra2tALS0tNDW1nbgGhJdP6nLtj1mTHv1T19h4UI4++x22tvbC1Oftou13aUo9cTa\n7nquKPXkuV2pVJg9ezbAgXl5OJm9oWpm3wQ+CewDRgDHAHPc/caar2m6N1Qh+RDTz36WrOfMgY99\nLG49ItJYor6h6u5fc/dJ7n4ycD2woHawN7Pac92VuR9KvQjUi0C9SCfP89yb7xC9F7qmu4hkLbPM\nvZa7PwY8lse+GkFPb6jW5orNTr0I1ItAvUhHn1CNoKdYRkSknjTcIxg3Lqzffjv5VXlioF4E6kWg\nXqSj4R5B7XDftCleHSJSXrqeewTLl8PZZyfrs86ClSvj1iMijaUo15aRbnTkLiJZ03CP4LjjwnrT\nJnBXnlhLvQjUi0C9SEfDPYLhw2H06GS9fz9s3Rq3HhEpH2XukUyeDK+8kqxXr4ZTT41bj4g0DmXu\nBabcXUSypOEeSffhrjwxUC8C9SJQL9LRcI9ER+4ikiUN90i6D3ddNyNQLwL1IlAv0tFwj0RH7iKS\nJQ33SJS59069CNSLQL1IR8M9Eh25i0iWdJ57JI8/Dn/4h8n6ootg0aK49YhI49B57gWmI3cRyZKG\neyS1w/2tt5Qn1lIvAvUiUC/S0XCPZOxYsOo/qjZvTq4xIyJSL8rcIzrhhOSoHWD9epgwIW49ItIY\nlLkX3AknhPWbb8arQ0TKR8M9ovHjw3r+/Eq0OopG2WqgXgTqRToa7hHVDvctW+LVISLlo+EeUW0s\nM3Zse7Q6ikbXEAnUi0C9SEfDPaLaI3dl7iJSTxruEdUO9+XLK9HqKBplq4F6EagX6Wi4R1Qby7zz\nTrw6RKR8dJ57RM88A9OnJ+u2Nli6NG49ItIYdJ57wdXGMhs3xqtDRMpHwz2i2ljmjTcqdHbGq6VI\nlK0G6kWgXqSj4R7RiBFwzDHJurNTubuI1I8y98hOPx1Wr07Wv/kNnHlm3HpEpPiUuTcAXV9GRLKg\n4R7ZiSd2rSq88UbMSopD2WqgXgTqRToa7pFNnBjWGzbEq0NEyiXT4W5mI8xsiZl1mNkqM/tWlvtr\nROEa7u2sXx+zkuLQNUQC9SJQL9IZkuVv7u6/M7NL3H2nmQ0BFpnZDHfX7aCrdOQuIlnIPJZx953V\n5TBgMLA56302kjDcKzpyr1K2GqgXgXqRTubD3cwGmVkH8Caw0N1XZb3PRlJ7az0duYtIveR2nruZ\nHQv8J/B/3L1Sfa7pz3PfvBmOOy5Zjx4N774btx4RKb7+nOeeaeZey923mtlDwHlApev5WbNm0dra\nCkBLSwttbW0H3jjp+mdYmbfdYfjwdnbvhm3bKvzylzBzZnHq07a2tR1/u1KpMHv2bIAD8/JwMj1y\nN7NxwD5332JmR5EcuX/d3R+tvt70R+4AJ58Ma9dWgHZeeglOOy12RXFVKpUD3+DNTr0I1IugCJ9Q\nnQAsqGbuS4B5XYNdgtozZvSmqojUg64tUwBXXw1z5iTre++F66+PW4+IFFsRjtylH3TkLiL1puFe\nAMlwrwA6HRJ0PnMt9SJQL9LRcC+A2iP311+PV4eIlIcy9wJYsAAuvTRZz5gBTzwRtx4RKTZl7g1i\n0qSwfu21eHWISHlouBfAe94DXZn766/T9PdSVbYaqBeBepGOhnsBjBwZ7qW6d6/uyCQiA6fMvSCm\nTYOOjmS9ZAlMnx63HhEpLmXuDaQ2d1+3Ll4dIlIOGu4FYVY5sG72N1WVrQbqRaBepKPhXhAnnBDW\nOnIXkYFS5l4Q99wDn/xksr72Wrj//rj1iEhx1eV67mbWAlwAtAIOrAWedPetdahRqpS5i0g99RrL\nmNnFZjYXeBy4HngvyYC/AXjCzOaa2YxcqmwCr71WObBu9uGubDVQLwL1Ip2+jtyvAr7s7qt7etHM\nTgc+CyzKorBmc/zxYb1+fXK++9Ch8eoRkcamzL1ATjopXDjs5ZfhlFPi1iMixVSX89zN7J5q7t61\n3WpmC+pRoBzs5JPD+pVX4tUhIo2vP6dCPgEsMbPLzewmYD5we7ZlNZ9KpaLhXqVsNVAvAvUincOe\nLePu3zezVcACYBNwjrvrlhIZmDw5rNesiVeHiDS+w2buZvZJ4P9WH+8DLgM+5e4dA965MveD3H03\nzJqVrK+7Du67L2o5IlJQdTnPHfhfwEXuvhG418x+CswG2gZeotRSLCMi9XLYzN3dP1od7F3bTwPv\nz7SqJtQ9c2/mWEbZaqBeBOpFOn19iOlvzGx8T6+5+24zm2BmX8+utOYzcSIMG5asN22C7dvj1iMi\njavXzN3MLgduBYYBvwY2AAacCJwD7Ab+3t1/ccQ7V+Z+iNNPh9XVj40tXw5Tp8atR0SKZ6DnuV/v\n7pcAvyT5FOp+YG91fZ27f3Agg116pmhGROqhr+F+rplNBK4FHgbuBH4IPALszKG2ptKVJ+pNVWWr\ntdSLQL1Ip6+zZb4HPApMBp7r9ppXn5c6qz3XvVmHu4gMXH/Oc/+eu382k50rcz/EAw8k13MHuOIK\nmDcvbj0iUjx1ubZMVoNdeqZYRkTqQbfZK4iuPLF7LNPZGaeemJStBupFoF6ko+FeMGPGJA+AnTvD\nJYBFRNLQ9dwL6MIL4cknk/XDD8OHPhS3HhEplrpk7pK/3//9sH7xxXh1iEjj0nAviNo88YwzwvMv\nvJB/LbEpWw3Ui0C9SEfDvYB05C4iA6XMvYBeeAGmTEnWkybBb38btx4RKZbombuZTTKzhWb2GzNb\naWZ/meX+ymLyZBg8OFmvWwc7dsStR0QaT9axzF7gi+5+FvAB4HNmNiXjfTak2jxx2DA45ZTwWtdV\nIpuFstVAvQjUi3QyHe7u/kbX7fjcfTvwPDAxy32WRW3u3oxvqorIwOT2hqqZtQLTgCV57bORtLe3\nH7Rde8ZMs72p2r0XzUy9CNSLdHIZ7mZ2NPAT4AvVI3g5DB25i8hA9OcG2QNiZkOBOcA97v5g99dn\nzZpFa2srAC0tLbS1tR34Cd2VsTXDdm2e2N7eXj1yT5578cX49eW53fVcUeqJud3R0cEtt9xSmHpi\nbt9xxx1NPR9mz54NcGBeHk6mp0KamQF3A2+7+xd7eF2nQlZVKpUD/1MhuYfq8ccn65EjYds2GNQk\nn0ro3otmpl4E6kXQn1Mhsx7uM4DHgeUkN/gA+Kq7/6r6uoZ7H8aPh40bk/Xq1XDqqXHrEZFi6M9w\nzzSWcfdF6FOwR+zss5MLh0Fys2wNdxHpLw3egqjNm7u8731hvWxZfrXE1lMvmpV6EagX6Wi4F9jZ\nZ4d1Mw13ERk4XVumwJYtg7a2ZH3yybBmTdx6RKQYor+hejga7n3bswdGjYJ9+5LtrVvhmGPi1iQi\n8UW/cJj0X0954rBh4eqQACtW5FdPTMpWA/UiUC/S0XAvOOXuInIkFMsU3Le/DX/1V8n6ppvg+9+P\nW4+IxKdYpgRqj9yXL49Xh4g0Fg33gugtT6w91335cti/P596YlK2GqgXgXqRjoZ7wZ14IkyYkKx3\n7oTnn49bj4g0BmXuDeCqq+DB6vU077wTPv3puPWISFzK3Eti+vSwXqJbnYhIP2i4F0RfeeL73x/W\nTz+dfS2xKVsN1ItAvUhHw70BnHceWPUfYCtWwI4dcesRkeJT5t4gzjoLVq1K1o8/DhdfHLceEYlH\nmXuJ1EYzyt1F5HA03AvicHliMw13ZauBehGoF+louDcInTEjImkoc28Q+/bBsccmH2QCePVVeO97\n49YkInEocy+RIUPgoovC9mOPxatFRIpPw70g+pMntrfXfn1WlcSnbDVQLwL1Ih0N9wbSLMNdRAZO\nmXsD2bMHxoxR7i7S7JS5l8ywYcrdRaR/NNwLor95YjNEM8pWA/UiUC/S0XBvMLXDfeHCaGWISMEp\nc28w3XP31avh1FPj1iQi+VLmXkLDhsGll4btX/wiXi0iUlwa7gWRJk+8/PKwfuih+tcSm7LVQL0I\n1It0NNwb0MyZYV2p6PruInIoZe4NaupUWLkyWc+dC1deGbceEcmPMvcSK3s0IyIDo+FeEGnzxI98\nJKwfegjK9A8gZauBehGoF+louDeoCy9MTokEeO01eOaZuPWISLEoc29gf/ZncNddyfpLX4LvfCdu\nPSKSD2XuJXfttWH9wAPQ2RmvFhEplkyHu5n9q5m9aWYrstxPGRxJnnjppTB2bLJetw6eeqq+NcWi\nbDVQLwL1Ip2sj9zvAi7LeB9Na+hQ+NjHwvaPfxyvFhEplswzdzNrBea5+9QeXlPmPkAPPwwf/nCy\nnjgRfvtbGDw4bk0iki1l7k3gkkvg+OOT9fr1MH9+3HpEpBiGxC5g1qxZtLa2AtDS0kJbWxvt1eva\ndmVszbBdmyem/e9vvLG9eqZMhW99C2bOjP/nGch213NFqSfmdkdHB7fcckth6om5fccddzT1fJg9\nezbAgXl5OIplCqJSqRz4n5rW88/DmWcm6yFDkvPex4+vX215G0gvyka9CNSLoD+xjIZ7ScyYAf/1\nX8n629+GW2+NW4+IZCd65m5m9wKLgdPNbJ2ZfSrL/TWzP//zsP7BD8p1OQIRSS/T4e7uN7j7RHcf\n7u6T3P2uLPfXyGrz5iNxzTUwenSyfukl+NWvBl5TLAPtRZmoF4F6kY7OlimJUaPg058O27oUgUhz\n07VlSmTt2uR+qvv3J9tLl0JbW9SSRCQD0TN3yVdrK1x9ddj+h3+IVoqIRKbhXhD1yhO//OWwvvde\nWLOmLr9trpStBupFoF6ko+FeMuefn3xqFWDfPvj61+PWIyJxKHMvoUWL4OKLk/WgQcm9VqdMiVuT\niNSPMvcmNWMGXFa9FmdnJ9x2W9x6RCR/Gu4FUe888RvfCOsHHgifXm0EylYD9SJQL9LRcC+p8847\n+MyZm28Op0iKSPkpcy+xV19NsvZdu5Ltf/5n+Oxn49YkIgOnzL3J/d7vwVe/Gra/9jXYsCFePSKS\nHw33gsgqT/zKV2Dy5GT9zjtw003Fv6iYstVAvQjUi3Q03EtuxAi4886w/fOfw913x6tHRPKhzL1J\nfP7z8N3vJuvRo+G55+C00+LWJCJHphA36+hz5xruudmxI7mI2MsvJ9tTp8JTT8HIkXHrEpH09IZq\nA8k6Txw1Cu6/H4YPT7ZXrEjOnCniz1Zlq4F6EagX6Wi4N5FzzoF/+qew/aMfwTe/Ga8eEcmOYpkm\n457c1OOumnti3XMP/OmfxqtJRNJR5i492rMHZs6EBQuS7SFD4Mc/hquuiluXiPSPMvcGkmeeOGwY\nzJkDZ52VbO/bB9deCw8+mFsJfVK2GqgXgXqRjoZ7k2ppgfnzw+mQ+/Yl16KpPSdeRBqXYpkm9/rr\n0N4eTpEE+Ou/Tm7yYX3+o09EYlHmLv2yYQNcfnlyQ+0u11wDP/gBHHtsvLpEpGfK3BtIzDxxwgR4\n7DH4oz8Kzz3wAJx77sEDPy/KVgP1IlAv0tFwFyC5JMG8efAXfxGe++//hg98ILnxx5498WoTkfQU\ny8gh7r8fPvMZ2LYtPDd1KvzLvyTDXkTiUiwjR+S665ILi02fHp5bsQIuuABuuAFeeSVebSLSPxru\nBVG0PPG002DxYrj99oMvLnbffXDGGUl8s2ZNNvsuWi9iUi8C9SIdDXfp1eDBcMstsHLlwfdj3bMH\nvve95AfAxz+eHOWLSLEoc5d+W7w4ubPT4sWHvjZtWpLTf/zjOn1SJGs6z13qzh0WLoS//Vt4+OFD\nXx8+PDml8uqr4cork0/Cikh96Q3VBtIoeaIZfPCDyaULnnkGPvGJ5FZ+XXbvhrlz4cYb4YQTkkH/\nne/AsmXQ2dm/fTRKL/KgXgTqRToa7nLEzjsvuSb8+vXJdeLb2g5+fe/e5IfArbcmr02YkJyJc/vt\n8OST8LvfxalbpBkolpG6Wr06ueLknDnw7LN9f+3QocnQP+cc+IM/CI9x4/KpVaRRKXOXqF59Ncnl\nH3kEHn0UNm3q3383fjxMmQKnnAKTJ4fHKafA2LG6oJlI9OFuZpcBdwCDgTvd/e+6va7hXlWpVGhv\nb49dRmY6O5PcffFiWLIkuTn36tW9fXUFaO/xlaOPhokTk4hn4sSD1xMmJEf9Y8fCcceF+8U2srJ/\nX6ShXgT9Ge5DMtz5YOC7wIeA14FnzGyuuz+f1T4bWUdHR6m/cQcNSk6XnDYNPve55Lm3307elF25\nMjxWrYJduzrobbhv3w4vvZQ8DmfUqDDou34dMya5js7o0ckPiq517aPr+VGjkjeLhw6N96+Fsn9f\npKFepJPZcAemAy+7+1oAM7sP+BNAw70HW7ZsiV1C7o47Di67LHl02b8fvvjFLcycmXwCds2a5AJm\nXesdO/r/++/YkTzWrRtYnYMGJUN+xAg46qhD17XPdf0wGOhjyJDkQ2S//vUWFi5M1oMHJ7X0tT7c\n6z2tzQ5+FFUz/h0ZiCyH+3uA2r9WrwHvz3B/UgKDBydH2TNnHvqaO2zZkpyds2FD8mvtesMG2Lw5\n+RfB5s3J3aXqobMTdu5MHjH86Ef57q/7sO/r0dMPh3p9ffevfeut5FLUXTXW1pvVOq/9HMn6cLIc\n7grTU1i7dm3sEgqjt16YJbHKmDHh/q+9cU+ualk77N9+O/nhsG3bwY/t2w99bts22LUredTrh8SR\nWZv7Ht2TR/Gs7feb8pLhG6pm9gHgb9z9sur2V4HO2jdVzayQ30IiIkUX7WwZMxsCvAhcCqwHngZu\n0BuqIiLZyyyWcfd9ZnYz8J8kp0L+UINdRCQfUT/EJCIi2Yh2bRkzu8zMXjCz1Wb2v2PVEZuZ/auZ\nvWlmK2LXEpuZTTKzhWb2GzNbaWZ/GbumWMxshJktMbMOM1tlZt+KXVNsZjbYzJaa2bzYtcRkZmvN\nbHm1F0/3+nUxjtyrH3B6kZoPONGkebyZXQxsB/7N3afGricmMzsRONHdO8zsaOA54KPN+H0BYGYj\n3X1n9f2rRcCt7r4odl2xmNmXgHOB0e7+x7HricXMXgHOdffNfX1drCP3Ax9wcve9QNcHnJqOuz8B\nvBO7jiJw9zfcvaO63k7ygbeJcauKx927zqwfRvK+VZ9/mcvMzE4CPgLcCRT4o1a5OWwPYg33nj7g\n9J5ItUgBmVkrMA1YEreSeMxskJl1AG8CC919VeyaIrod+ArQz7sClJoDj5jZs2b2md6+KNZw17u4\n0qtqJPMT4AvVI/im5O6d7t4GnAT8DzNrj1xSFGZ2BbDR3Zeio3aAi9x9GjAT+Fw12j1ErOH+OjCp\nZnsSydG7NDkzGwrMAe5x9wdj11ME7r4VeAg4L3YtkVwI/HE1a74X+KCZ/VvkmqJx9w3VX98CfkoS\ncx8i1nB/FjjNzFrNbBhwHTA3Ui1SEGZmwA+BVe5+R+x6YjKzcWbWUl0fBfxPYGncquJw96+5+yR3\nPxm4Hljg7jfGrisGMxtpZqOr61HAh4Eez7SLMtzdfR/Q9QGnVcD9TXxGxL3AYuB0M1tnZp+KXVNE\nFwGfAC6pnua1tHpPgGY0AVhQzdyXAPPc/dHINRVFM8e644Enar4vfu7u83v6Qn2ISUSkhHSDbBGR\nEtJwFxEpIQ13EZES0nAXESkhDXcRkRLScBcRKSENdxGREtJwFxEpIQ13kRpmdr6ZLTOz4WY2qnrT\nkDNj1yWSlj6hKtKNmX0DGAEcBaxz97+LXJJIahruIt1Ur0z5LLALuMD1l0QakGIZkUONA0YBR5Mc\nvYs0HB25i3RjZnOBfwcmAxPc/fORSxJJbUjsAkSKxMxuBHa7+31mNghYbGbt7l6JXJpIKjpyFxEp\nIWXuIiIlpOEuIlJCGu4iIiWk4S4iUkIa7iIiJaThLiJSQhruIiIlpOEuIlJC/x940ghKVVaxiQAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "\n", + "import numpy as np\n", + "import sympy as sp\n", + "from matplotlib import pyplot as plt\n", + "\n", + "# f(x) = 1/x --> Diverges\n", + "f = lambda x: 3/(x**5)\n", + "\n", + "sp.mpmath.plot([f], xlim=[0,5], ylim=[0,5], points=500)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Problem 3\n", + "4 points\n", + "\n", + "$$\\{a_n\\} = \\frac{n^4}{5n^4+3}$$\n", + "\n", + "$$= \\lim_{n\\to \\infty} \\frac{n^4}{5n^4+3}$$\n", + "\n", + "$$= \\lim_{n\\to \\infty} \\frac{\\frac{n^4}{n^4}}{5\\left(\\frac{n^4}{n^4}\\right) + 3\\left(\\frac{1}{n^4}\\right)}$$\n", + "\n", + "$$= \\lim_{n\\to \\infty} \\frac{1}{5 + 3(0)}$$\n", + "\n", + "$$= \\frac{1}{5}$$\n", + "\n", + "__Converges__" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}