-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpidigits.py
162 lines (140 loc) · 4.13 KB
/
pidigits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""Compute statistics on the digits of pi.
This uses precomputed digits of pi from the website
of Professor Yasumasa Kanada at the University of
Tokoyo: http://www.super-computing.org/
Currently, there are only functions to read the
.txt (non-compressed, non-binary) files, but adding
support for compression and binary files would be
straightforward.
This focuses on computing the number of times that
all 1, 2, n digits sequences occur in the digits of pi.
If the digits of pi are truly random, these frequencies
should be equal.
"""
# Import statements
from __future__ import division, with_statement
import numpy as np
from matplotlib import pyplot as plt
try : #python2
from urllib import urlretrieve
except ImportError : #python3
from urllib.request import urlretrieve
# Top-level functions
def fetch_pi_file(filename):
"""This will download a segment of pi from super-computing.org
if the file is not already present.
"""
import os, urllib
ftpdir="ftp://pi.super-computing.org/.2/pi200m/"
if os.path.exists(filename):
# we already have it
return
else:
# download it
urlretrieve(ftpdir+filename,filename)
def compute_one_digit_freqs(filename):
"""
Read digits of pi from a file and compute the 1 digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = one_digit_freqs(d)
return freqs
def compute_two_digit_freqs(filename):
"""
Read digits of pi from a file and compute the 2 digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = two_digit_freqs(d)
return freqs
def reduce_freqs(freqlist):
"""
Add up a list of freq counts to get the total counts.
"""
allfreqs = np.zeros_like(freqlist[0])
for f in freqlist:
allfreqs += f
return allfreqs
def compute_n_digit_freqs(filename, n):
"""
Read digits of pi from a file and compute the n digit frequencies.
"""
d = txt_file_to_digits(filename)
freqs = n_digit_freqs(d, n)
return freqs
# Read digits from a txt file
def txt_file_to_digits(filename, the_type=str):
"""
Yield the digits of pi read from a .txt file.
"""
with open(filename, 'r') as f:
for line in f.readlines():
for c in line:
if c != '\n' and c!= ' ':
yield the_type(c)
# Actual counting functions
def one_digit_freqs(digits, normalize=False):
"""
Consume digits of pi and compute 1 digit freq. counts.
"""
freqs = np.zeros(10, dtype='i4')
for d in digits:
freqs[int(d)] += 1
if normalize:
freqs = freqs/freqs.sum()
return freqs
def two_digit_freqs(digits, normalize=False):
"""
Consume digits of pi and compute 2 digits freq. counts.
"""
freqs = np.zeros(100, dtype='i4')
last = next(digits)
this = next(digits)
for d in digits:
index = int(last + this)
freqs[index] += 1
last = this
this = d
if normalize:
freqs = freqs/freqs.sum()
return freqs
def n_digit_freqs(digits, n, normalize=False):
"""
Consume digits of pi and compute n digits freq. counts.
This should only be used for 1-6 digits.
"""
freqs = np.zeros(pow(10,n), dtype='i4')
current = np.zeros(n, dtype=int)
for i in range(n):
current[i] = next(digits)
for d in digits:
index = int(''.join(map(str, current)))
freqs[index] += 1
current[0:-1] = current[1:]
current[-1] = d
if normalize:
freqs = freqs/freqs.sum()
return freqs
# Plotting functions
def plot_two_digit_freqs(f2):
"""
Plot two digits frequency counts using matplotlib.
"""
f2_copy = f2.copy()
f2_copy.shape = (10,10)
ax = plt.matshow(f2_copy)
plt.colorbar()
for i in range(10):
for j in range(10):
plt.text(i-0.2, j+0.2, str(j)+str(i))
plt.ylabel('First digit')
plt.xlabel('Second digit')
return ax
def plot_one_digit_freqs(f1):
"""
Plot one digit frequency counts using matplotlib.
"""
ax = plt.plot(f1,'bo-')
plt.title('Single digit counts in pi')
plt.xlabel('Digit')
plt.ylabel('Count')
return ax