-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrrgcn.py
496 lines (429 loc) · 23.8 KB
/
rrgcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# from rgcn.layers import RGCNBlockLayer as RGCNLayer
from rgcn.layers import UnionRGCNLayer, RGCNBlockLayer
from model import BaseRGCN
from decoder import ConvTransE, ConvTransR
class RGCNCell(BaseRGCN):
def build_hidden_layer(self, idx):
act = F.rrelu
if idx:
self.num_basis = 0
print("activate function: {}".format(act))
if self.skip_connect:
sc = False if idx == 0 else True
else:
sc = False
if self.encoder_name == "uvrgcn":
return UnionRGCNLayer(self.h_dim, self.h_dim, self.num_rels, self.num_bases,
activation=act, dropout=self.dropout, self_loop=self.self_loop, skip_connect=sc, rel_emb=self.rel_emb, pe_init=self.pe_init, pe_dim=self.pe_dim)
else:
raise NotImplementedError
def forward(self, g, init_ent_emb, init_rel_emb, method=0):
if self.encoder_name == "uvrgcn":
if method == 0:
node_id = g.ndata['id'].squeeze()
g.ndata['h'] = init_ent_emb[node_id]
elif method == 1:
g.ndata['h'] = init_ent_emb
x, r = init_ent_emb, init_rel_emb
for i, layer in enumerate(self.layers):
layer(g, [], r[i])
return g.ndata.pop('h')
else:
if self.features is not None:
print("----------------Feature is not None, Attention ------------")
g.ndata['id'] = self.features
node_id = g.ndata['id'].squeeze()
g.ndata['h'] = init_ent_emb[node_id]
if self.skip_connect:
prev_h = []
for layer in self.layers:
prev_h = layer(g, prev_h)
else:
for layer in self.layers:
layer(g, [])
return g.ndata.pop('h')
class RecurrentRGCN(nn.Module):
def __init__(self, decoder, encoder, gnn, num_ents, num_rels, num_static_rels, num_words, h_dim, opn, sequence_len, num_bases=-1, num_basis=-1,
num_hidden_layers=1, dropout=0, self_loop=False, skip_connect=False, layer_norm=True, input_dropout=0,
hidden_dropout=0, feat_dropout=0, aggregation='cat', weight=1, discount=0, angle=0, use_static=False,
entity_prediction=False, relation_prediction=False, sequence='rnn', use_cuda=False, analysis=False, pe_init="rw", pe_dim=3):
super(RecurrentRGCN, self).__init__()
self.decoder_name = decoder
self.encoder_name = encoder
self.gnn = gnn
self.num_rels = num_rels
self.num_ents = num_ents
self.opn = opn
self.num_words = num_words
self.num_static_rels = num_static_rels
self.sequence_len = sequence_len
self.h_dim = h_dim
self.layer_norm = layer_norm
self.h = None
self.run_analysis = analysis
self.aggregation = aggregation
self.relation_evolve = False
self.weight = weight
self.discount = discount
self.use_static = use_static
self.angle = angle
self.relation_prediction = relation_prediction
self.entity_prediction = entity_prediction
self.sequence = sequence
self.emb_rel = None
self.w1 = torch.nn.Parameter(torch.Tensor(self.h_dim, self.h_dim), requires_grad=True).float()
torch.nn.init.xavier_normal_(self.w1)
self.w2 = torch.nn.Parameter(torch.Tensor(self.h_dim, self.h_dim), requires_grad=True).float()
torch.nn.init.xavier_normal_(self.w2)
# self.emb_rel = torch.nn.Parameter(torch.Tensor(self.num_rels * 2, self.h_dim), requires_grad=True).float()
# torch.nn.init.xavier_normal_(self.emb_rel)
# self.dynamic_emb = torch.nn.Parameter(torch.Tensor(num_ents, h_dim), requires_grad=True).float()
# torch.nn.init.normal_(self.dynamic_emb)
self.dynamic_emb = None
if self.use_static:
self.words_emb = torch.nn.Parameter(torch.Tensor(self.num_words, h_dim), requires_grad=True).float()
torch.nn.init.xavier_normal_(self.words_emb)
self.statci_rgcn_layer = RGCNBlockLayer(self.h_dim, self.h_dim, self.num_static_rels*2, num_bases,
activation=F.rrelu, dropout=dropout, self_loop=False, skip_connect=False)
self.static_loss = torch.nn.MSELoss()
self.loss_r = torch.nn.CrossEntropyLoss()
self.loss_e = torch.nn.CrossEntropyLoss()
self.rgcn = None
# self.rgcn = RGCNCell(num_ents,
# h_dim,
# h_dim,
# num_rels * 2,
# num_bases,
# num_basis,
# num_hidden_layers,
# dropout,
# self_loop,
# skip_connect,
# encoder,
# self.opn,
# self.emb_rel,
# use_cuda,
# analysis)
if self.sequence == 'regcn':
self.time_gate_weight = nn.Parameter(torch.Tensor(h_dim, h_dim))
nn.init.xavier_uniform_(self.time_gate_weight, gain=nn.init.calculate_gain('relu'))
self.time_gate_bias = nn.Parameter(torch.Tensor(h_dim))
nn.init.zeros_(self.time_gate_bias)
elif self.sequence == 'rnn':
self.rnn_cell = nn.GRUCell(self.h_dim, self.h_dim)
# GRU cell for relation evolving
self.relation_cell_1 = nn.GRUCell(self.h_dim*2, self.h_dim)
# decoder
# if decoder == "convtranse":
# self.decoder_ob = ConvTransE(num_ents, h_dim, input_dropout, hidden_dropout, feat_dropout)
# self.rdecoder = ConvTransR(num_rels, h_dim, input_dropout, hidden_dropout, feat_dropout)
# else:
# raise NotImplementedError
def forward(self, g_list, static_graph=None, device=None):
gate_list = []
degree_list = []
if self.use_static:
static_graph = static_graph.to(device)
static_graph.ndata['h'] = torch.cat((self.dynamic_emb, self.words_emb), dim=0) # 演化得到的表示,和wordemb满足静态图约束
self.statci_rgcn_layer(static_graph, [])
static_emb = static_graph.ndata.pop('h')[:self.num_ents, :]
static_emb = F.normalize(static_emb) if self.layer_norm else static_emb
self.h = static_emb
else:
self.h = F.normalize(self.dynamic_emb) if self.layer_norm else self.dynamic_emb[:, :]
static_emb = None
history_embs = []
for i, g in enumerate(g_list):
g = g.to(device)
temp_e = self.h[g.r_to_e]
x_input = torch.zeros(self.num_rels * 2, self.h_dim).float().to(device)
for span, r_idx in zip(g.r_len, g.uniq_r):
x = temp_e[span[0]:span[1],:]
x_mean = torch.mean(x, dim=0, keepdim=True)
x_input[r_idx] = x_mean
if i == 0:
x_input = torch.cat((self.emb_rel[0:self.num_rels *2], x_input), dim=1)
self.h_0 = self.relation_cell_1(x_input, self.emb_rel[0:self.num_rels *2]) # 第1层输入
self.h_0 = F.normalize(self.h_0) if self.layer_norm else self.h_0
else:
x_input = torch.cat((self.emb_rel[0:self.num_rels *2], x_input), dim=1)
self.h_0 = self.relation_cell_1(x_input, self.h_0) # 第2层输出==下一时刻第一层输入
self.h_0 = F.normalize(self.h_0) if self.layer_norm else self.h_0
if self.gnn == 'regcn':
current_h = self.rgcn.forward(g, self.h, [self.h_0, self.h_0])
elif self.gnn == 'rgat':
g.edata['r_h'] = self.h_0[g.edata['etype']]
#g.edata['r_h'] = self.emb_rel[g.edata['etype']]
current_h = self.rgcn(g, self.h)
if self.sequence == 'regcn':
current_h = F.normalize(current_h) if self.layer_norm else current_h
time_weight = torch.sigmoid(torch.mm(self.h, self.time_gate_weight) + self.time_gate_bias)
self.h = time_weight * current_h + (1-time_weight) * self.h
elif self.sequence == 'rnn':
self.h = self.rnn_cell(current_h, self.h)
history_embs.append(self.h)
return history_embs, static_emb, self.h_0, gate_list, degree_list
def predict(self, test_graph, num_rels, static_graph, test_triplets, use_cuda):
with torch.no_grad():
inverse_test_triplets = test_triplets[:, [2, 1, 0]]
inverse_test_triplets[:, 1] = inverse_test_triplets[:, 1] + num_rels # 将逆关系换成逆关系的id
all_triples = torch.cat((test_triplets, inverse_test_triplets))
evolve_embs, _, r_emb, _, _ = self.forward(test_graph, static_graph, use_cuda)
embedding = F.normalize(evolve_embs[-1]) if self.layer_norm else evolve_embs[-1]
score = self.decoder_ob.forward(embedding, r_emb, all_triples, mode="test")
score_rel = self.rdecoder.forward(embedding, r_emb, all_triples, mode="test")
return all_triples, score, score_rel
def get_loss(self, glist, triples, static_graph, device):
"""
:param glist:
:param triplets:
:param static_graph:
:param use_cuda:
:return:
"""
loss_ent = torch.zeros(1).to(device)
loss_rel = torch.zeros(1).to(device)
loss_static = torch.zeros(1).to(device)
inverse_triples = triples[:, [2, 1, 0]]
inverse_triples[:, 1] = inverse_triples[:, 1] + self.num_rels
all_triples = torch.cat([triples, inverse_triples])
all_triples = all_triples.to(device)
evolve_embs, static_emb, r_emb, _, _ = self.forward(glist, static_graph, device)
pre_emb = F.normalize(evolve_embs[-1]) if self.layer_norm else evolve_embs[-1]
if self.entity_prediction:
scores_ob = self.decoder_ob.forward(pre_emb, r_emb, all_triples).view(-1, self.num_ents)
loss_ent += self.loss_e(scores_ob, all_triples[:, 2])
if self.relation_prediction:
score_rel = self.rdecoder.forward(pre_emb, r_emb, all_triples, mode="train").view(-1, 2 * self.num_rels)
loss_rel += self.loss_r(score_rel, all_triples[:, 1])
if self.use_static:
if self.discount == 1:
for time_step, evolve_emb in enumerate(evolve_embs):
step = (self.angle * math.pi / 180) * (time_step + 1)
if self.layer_norm:
sim_matrix = torch.sum(static_emb * F.normalize(evolve_emb), dim=1)
else:
sim_matrix = torch.sum(static_emb * evolve_emb, dim=1)
c = torch.norm(static_emb, p=2, dim=1) * torch.norm(evolve_emb, p=2, dim=1)
sim_matrix = sim_matrix / c
mask = (math.cos(step) - sim_matrix) > 0
loss_static += self.weight * torch.sum(torch.masked_select(math.cos(step) - sim_matrix, mask))
elif self.discount == 0:
for time_step, evolve_emb in enumerate(evolve_embs):
step = (self.angle * math.pi / 180)
if self.layer_norm:
sim_matrix = torch.sum(static_emb * F.normalize(evolve_emb), dim=1)
else:
sim_matrix = torch.sum(static_emb * evolve_emb, dim=1)
c = torch.norm(static_emb, p=2, dim=1) * torch.norm(evolve_emb, p=2, dim=1)
sim_matrix = sim_matrix / c
mask = (math.cos(step) - sim_matrix) > 0
loss_static += self.weight * torch.sum(torch.masked_select(math.cos(step) - sim_matrix, mask))
return loss_ent, loss_rel, loss_static
class BiRecurrentRGCN(nn.Module):
def __init__(self, decoder, encoder, gnn, num_ents, num_rels, num_static_rels, num_words, h_dim, opn, sequence_len, num_bases=-1, num_basis=-1,
num_hidden_layers=1, dropout=0, self_loop=False, skip_connect=False, layer_norm=True, input_dropout=0,
hidden_dropout=0, feat_dropout=0, aggregation='cat', weight=1, discount=0, angle=0, use_static=False,
entity_prediction=False, relation_prediction=False, sequence='rnn', use_cuda=False, analysis=False, pe_init="rw", pe_dim=3):
super(BiRecurrentRGCN, self).__init__()
self.decoder_name = decoder
self.encoder_name = encoder
self.gnn = gnn
self.num_rels = num_rels
self.num_ents = num_ents
self.opn = opn
self.num_words = num_words
self.num_static_rels = num_static_rels
self.sequence_len = sequence_len
self.h_dim = h_dim
self.layer_norm = layer_norm
self.h = None
self.run_analysis = analysis
self.aggregation = aggregation
self.relation_evolve = False
self.weight = weight
self.discount = discount
self.use_static = use_static
self.angle = angle
self.relation_prediction = relation_prediction
self.entity_prediction = entity_prediction
self.sequence = sequence
self.emb_rel = None
self.w1 = torch.nn.Parameter(torch.Tensor(self.h_dim, self.h_dim), requires_grad=True).float()
torch.nn.init.xavier_normal_(self.w1)
self.w2 = torch.nn.Parameter(torch.Tensor(self.h_dim, self.h_dim), requires_grad=True).float()
torch.nn.init.xavier_normal_(self.w2)
# self.dynamic_emb = torch.nn.Parameter(torch.Tensor(num_ents, h_dim), requires_grad=True).float()
# torch.nn.init.normal_(self.dynamic_emb)
self.dynamic_emb = None
if self.use_static:
self.words_emb = torch.nn.Parameter(torch.Tensor(self.num_words, h_dim), requires_grad=True).float()
torch.nn.init.xavier_normal_(self.words_emb)
self.statci_rgcn_layer = RGCNBlockLayer(self.h_dim, self.h_dim, self.num_static_rels*2, num_bases,
activation=F.rrelu, dropout=dropout, self_loop=False, skip_connect=False)
self.static_loss = torch.nn.MSELoss()
self.loss_r = torch.nn.CrossEntropyLoss()
self.loss_e = torch.nn.CrossEntropyLoss()
self.rgcn = None
self.burgcn = None
if self.sequence == 'regcn':
self.time_gate_weight = nn.Parameter(torch.Tensor(h_dim, h_dim))
nn.init.xavier_uniform_(self.time_gate_weight, gain=nn.init.calculate_gain('relu'))
self.time_gate_bias = nn.Parameter(torch.Tensor(h_dim))
nn.init.zeros_(self.time_gate_bias)
self.reverse_time_gate_weight = nn.Parameter(torch.Tensor(h_dim, h_dim))
nn.init.xavier_uniform_(self.reverse_time_gate_weight, gain=nn.init.calculate_gain('relu'))
self.reverse_time_gate_bias = nn.Parameter(torch.Tensor(h_dim))
nn.init.zeros_(self.reverse_time_gate_bias)
elif self.sequence == 'rnn':
self.rnn_cell = nn.GRUCell(self.h_dim, self.h_dim)
self.rnn_cell2 = nn.GRUCell(self.h_dim, self.h_dim)
# GRU cell for relation evolving
self.relation_cell_1 = nn.GRUCell(self.h_dim*2, self.h_dim)
self.relation_cell_2 = nn.GRUCell(self.h_dim*2, self.h_dim)
# decoder
# if decoder == "convtranse":
# self.decoder_ob = ConvTransE(num_ents, h_dim, input_dropout, hidden_dropout, feat_dropout)
# self.rdecoder = ConvTransR(num_rels, h_dim, input_dropout, hidden_dropout, feat_dropout)
# else:
# raise NotImplementedError
def forward(self, g_list, static_graph=None, device=None):
gate_list = []
degree_list = []
if self.use_static:
static_graph = static_graph.to(device)
static_graph.ndata['h'] = torch.cat((self.dynamic_emb, self.words_emb), dim=0) # 演化得到的表示,和wordemb满足静态图约束
self.statci_rgcn_layer(static_graph, [])
static_emb = static_graph.ndata.pop('h')[:self.num_ents, :]
static_emb = F.normalize(static_emb) if self.layer_norm else static_emb
self.h = static_emb
else:
self.h = F.normalize(self.dynamic_emb) if self.layer_norm else self.dynamic_emb[:, :]
static_emb = None
self.h1 = self.h
history_embs = []
reverse_history_embs = []
reverse_g_list = g_list[::-1]
for i, g in enumerate(reverse_g_list):
g = g.to(device)
temp_e = self.h1[g.r_to_e] # 存储了与当前图中关系关联的实体嵌入
x_input = torch.zeros(self.num_rels * 2, self.h_dim).float().to(device)
for span, r_idx in zip(g.r_len, g.uniq_r):
x = temp_e[span[0]:span[1],:]
x_mean = torch.mean(x, dim=0, keepdim=True)
x_input[r_idx] = x_mean
if i == 0:
x_input = torch.cat((self.reverse_emb_rel[0:self.num_rels *2], x_input), dim=1)
self.h_1 = self.relation_cell_2(x_input, self.reverse_emb_rel[0:self.num_rels *2]) # 第1层输入
self.h_1 = F.normalize(self.h_1) if self.layer_norm else self.h_1
else:
x_input = torch.cat((self.reverse_emb_rel[0:self.num_rels *2], x_input), dim=1)
self.h_1 = self.relation_cell_2(x_input, self.h_1) # 第2层输出==下一时刻第一层输入
self.h_1 = F.normalize(self.h_1) if self.layer_norm else self.h_1
# self.h_1 = self.h_1+ e
# current_h = current_h + p
if self.gnn == "regcn":
current_h = self.burgcn.forward(g, self.h1, [self.h_1, self.h_1])
elif self.gnn == "rgat":
current_h = self.h_1[g.edata['type']]
current_h = self.burgcn(g, self.h1)
if self.sequence == "regcn":
current_h = F.normalize(current_h) if self.layer_norm else current_h
time_weight = F.sigmoid(torch.mm(self.h1, self.reverse_time_gate_weight) + self.reverse_time_gate_bias)
self.h1 = time_weight * current_h + (1-time_weight) * self.h1
elif self.sequence == "rnn":
self.h1 = self.rnn_cell2(current_h, self.h)
reverse_history_embs.append(self.h1)
for i, g in enumerate(g_list):
g = g.to(device)
temp_e = self.h[g.r_to_e]
x_input = torch.zeros(self.num_rels * 2, self.h_dim).float().to(device)
for span, r_idx in zip(g.r_len, g.uniq_r):
x = temp_e[span[0]:span[1],:]
x_mean = torch.mean(x, dim=0, keepdim=True)
x_input[r_idx] = x_mean
if i == 0:
x_input = torch.cat((self.emb_rel[0:self.num_rels *2], x_input), dim=1)
self.h_0 = self.relation_cell_1(x_input, self.emb_rel[0:self.num_rels *2]) # 第1层输入
self.h_0 = F.normalize(self.h_0) if self.layer_norm else self.h_0
else:
x_input = torch.cat((self.emb_rel[0:self.num_rels *2], x_input), dim=1)
self.h_0 = self.relation_cell_1(x_input, self.h_0) # 第2层输出==下一时刻第一层输入
self.h_0 = F.normalize(self.h_0) if self.layer_norm else self.h_0
if self.gnn == 'regcn':
current_h = self.rgcn.forward(g, self.h, [self.h_0, self.h_0])
elif self.gnn == 'rgat':
g.edata['r_h'] = self.h_0[g.edata['etype']]
#g.edata['r_h'] = self.emb_rel[g.edata['etype']]
current_h = self.rgcn(g, self.h)
if self.sequence == 'regcn':
current_h = F.normalize(current_h) if self.layer_norm else current_h
time_weight = torch.sigmoid(torch.mm(self.h, self.time_gate_weight) + self.time_gate_bias)
self.h = time_weight * current_h + (1-time_weight) * self.h
elif self.sequence == 'rnn':
self.h = self.rnn_cell(current_h, self.h)
self.h = self.h + reverse_history_embs[len(g_list)-i-1]
history_embs.append(self.h)
return history_embs, static_emb, self.h_0, gate_list, degree_list
def predict(self, test_graph, num_rels, static_graph, test_triplets, use_cuda):
with torch.no_grad():
inverse_test_triplets = test_triplets[:, [2, 1, 0]]
inverse_test_triplets[:, 1] = inverse_test_triplets[:, 1] + num_rels # 将逆关系换成逆关系的id
all_triples = torch.cat((test_triplets, inverse_test_triplets))
evolve_embs, _, r_emb, _, _ = self.forward(test_graph, static_graph, use_cuda)
embedding = F.normalize(evolve_embs[-1]) if self.layer_norm else evolve_embs[-1]
score = self.decoder_ob.forward(embedding, r_emb, all_triples, mode="test")
score_rel = self.rdecoder.forward(embedding, r_emb, all_triples, mode="test")
return all_triples, score, score_rel
def get_loss(self, glist, triples, static_graph, device):
"""
:param glist:
:param triplets:
:param static_graph:
:param use_cuda:
:return:
"""
loss_ent = torch.zeros(1).to(device)
loss_rel = torch.zeros(1).to(device)
loss_static = torch.zeros(1).to(device)
inverse_triples = triples[:, [2, 1, 0]]
inverse_triples[:, 1] = inverse_triples[:, 1] + self.num_rels
all_triples = torch.cat([triples, inverse_triples])
all_triples = all_triples.to(device)
evolve_embs, static_emb, r_emb, _, _ = self.forward(glist, static_graph, device)
pre_emb = F.normalize(evolve_embs[-1]) if self.layer_norm else evolve_embs[-1]
if self.entity_prediction:
scores_ob = self.decoder_ob.forward(pre_emb, r_emb, all_triples).view(-1, self.num_ents)
loss_ent += self.loss_e(scores_ob, all_triples[:, 2])
if self.relation_prediction:
score_rel = self.rdecoder.forward(pre_emb, r_emb, all_triples, mode="train").view(-1, 2 * self.num_rels)
loss_rel += self.loss_r(score_rel, all_triples[:, 1])
if self.use_static:
if self.discount == 1:
for time_step, evolve_emb in enumerate(evolve_embs):
step = (self.angle * math.pi / 180) * (time_step + 1)
if self.layer_norm:
sim_matrix = torch.sum(static_emb * F.normalize(evolve_emb), dim=1)
else:
sim_matrix = torch.sum(static_emb * evolve_emb, dim=1)
c = torch.norm(static_emb, p=2, dim=1) * torch.norm(evolve_emb, p=2, dim=1)
sim_matrix = sim_matrix / c
mask = (math.cos(step) - sim_matrix) > 0
loss_static += self.weight * torch.sum(torch.masked_select(math.cos(step) - sim_matrix, mask))
elif self.discount == 0:
for time_step, evolve_emb in enumerate(evolve_embs):
step = (self.angle * math.pi / 180)
if self.layer_norm:
sim_matrix = torch.sum(static_emb * F.normalize(evolve_emb), dim=1)
else:
sim_matrix = torch.sum(static_emb * evolve_emb, dim=1)
c = torch.norm(static_emb, p=2, dim=1) * torch.norm(evolve_emb, p=2, dim=1)
sim_matrix = sim_matrix / c
mask = (math.cos(step) - sim_matrix) > 0
loss_static += self.weight * torch.sum(torch.masked_select(math.cos(step) - sim_matrix, mask))
return loss_ent, loss_rel, loss_static