@@ -308,7 +308,7 @@ def import_csv(filename):
308
308
print ('Interval not understood!' )
309
309
310
310
df .index = df .index .tz_localize (
311
- pytz .FixedOffset (float (info ['Time Zone' ][ 0 ] * 60 )))
311
+ pytz .FixedOffset (float (info ['Time Zone' ] * 60 )))
312
312
313
313
return (df , info )
314
314
@@ -547,11 +547,68 @@ def build_weather_info(info):
547
547
548
548
return weather , info
549
549
550
+
551
+
550
552
def haversine_distance (lat1 , lon1 , lat2 , lon2 ):
553
+ """
554
+ Calculate Haversine distance in km between two locations.
555
+
556
+ Parameters
557
+ ----------
558
+ lat1 : numeric
559
+ latitude of first point, in degrees.
560
+ lon1 : numeric
561
+ longitude of first point, in degrees.
562
+ lat2 : numeric
563
+ latitude of second point, in degrees.
564
+ lon2 : numeric
565
+ longitude of second point, in degrees.
566
+
567
+ Returns
568
+ -------
569
+ numeric: Haversine distance in km.
570
+
571
+ """
551
572
p = 0.017453292519943295
552
573
a = 0.5 - np .cos ((lat2 - lat1 )* p )/ 2 + np .cos (lat1 * p )* np .cos (lat2 * p ) * (1 - np .cos ((lon2 - lon1 )* p )) / 2
553
574
return 12742 * np .arcsin (np .sqrt (a ))
554
575
576
+ def arg_closest_point (lat_point , lon_point , lat_list , lon_list ):
577
+ """
578
+ Calculate the index of the closest point in the list of coordinates (
579
+ lat_list, lon_list) to the point (lat_point, lon_point). Uses Haversine
580
+ distance formula to calculate the distance.
581
+
582
+ Parameters
583
+ ----------
584
+ lat_point : numeric
585
+ latitude of point to search for, in degrees
586
+ lon_point : numeric
587
+ longitude of point to search for, in degrees.
588
+ lat_list : array
589
+ list of latitudes to search within, in degrees.
590
+ lon_list : array
591
+ list of longitudes to search within, in degrees. Must be the same size
592
+ as lat_list
593
+
594
+ Returns
595
+ -------
596
+ numeric : distance
597
+ """
598
+ return np .argmin (
599
+ haversine_distance (np .array (lat_list ), np .array (lon_list ),
600
+ lat_point , lon_point ))
601
+
602
+
603
+
604
+
605
+ #
606
+ #
607
+ # def haversine_distance(lat1, lon1, lat2, lon2):
608
+ # p = 0.017453292519943295
609
+ # a = 0.5 - np.cos((lat2-lat1)*p)/2 + np.cos(lat1*p)*np.cos(lat2*p) * (1-np.cos((lon2-lon1)*p)) / 2
610
+ # return 12742 * np.arcsin(np.sqrt(a))
611
+
555
612
def closest_degrees (lat_find , lon_find , lat_list , lon_list ):
556
613
557
614
distance = np .sqrt ( (lat_find - lat_list )** 2 + (lon_find - lon_list )** 2 )
@@ -560,12 +617,6 @@ def closest_degrees(lat_find, lon_find, lat_list, lon_list):
560
617
561
618
return (closest_index , distance_in_degrees )
562
619
563
- def arg_closest_point (lat_point , lon_point , lat_list , lon_list ):
564
-
565
- return np .argmin (
566
- haversine_distance (np .array (lat_list ), np .array (lon_list ),
567
- lat_point , lon_point ))
568
-
569
620
570
621
571
622
def find_closest_datafiles (lat ,lon ,filedata ):
0 commit comments