This repository has been archived by the owner on Jul 7, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcontroller.py
457 lines (387 loc) · 18.9 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import shutil
import pickle
import time
import numpy as np
import torch
from os.path import join
import all_constants as ac
import utils as ut
if torch.cuda.is_available():
torch.cuda.manual_seed(ac.SEED)
else:
torch.manual_seed(ac.SEED)
class Controller(object):
def __init__(self, args, model, data_manager):
super(Controller, self).__init__()
self.args = args
self.model = model
self.data_manager = data_manager
self.logger = args.logger
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# learning rate
self.lr = args.lr
self.lr_scale = args.lr_scale
self.lr_decay = args.lr_decay
self.lr_scheduler = args.lr_scheduler
self.warmup_steps = args.warmup_steps
# heuristic
self.stop_lr = args.stop_lr
self.patience = args.patience
# others
self.epoch_size = args.epoch_size
self.max_epochs = args.max_epochs
self.model.to(self.device)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
# logging
self.log_freq = args.log_freq
self.pairs = args.pairs.split(',')
self.stats = {
'words': 0.,
'time': 0.,
'avg_bleus': [],
'gnorms': [],
'step': 0.
}
for pair in self.pairs:
self.stats[pair] = {
'log_loss': 0.,
'log_nll_loss': 0.,
'log_weight': 0.,
'epoch_loss': 0.,
'epoch_nll_loss': 0.,
'epoch_weight': 0.,
'train_smppls': [],
'train_ppls': [],
'dev_smppls': [],
'dev_ppls': [],
'dev_bleus': []
}
def train(self):
# load data
self.data_manager.load_data()
for epoch_num in range(1, self.max_epochs + 1):
for batch_num in range(1, self.epoch_size + 1):
self.run_log(batch_num, epoch_num)
self.report_epoch(epoch_num)
self.eval_and_decay()
if self.lr_scheduler == ac.NO_WU:
cond = self.lr < self.stop_lr
else:
# with warmup
cond = self.stats['step'] > self.warmup_steps and self.lr < self.stop_lr
if cond:
self.logger.info('lr = {0:1.2e} <= stop_lr = {0:1.2e}. Stop training.'.format(self.lr, self.stop_lr))
break
self.logger.info('XONGGGGGGG!!! FINISHEDDDD!!!')
train_stats_file = join(self.args.dump_dir, 'train_stats.pkl')
self.logger.info('Dump stats to {}'.format(train_stats_file))
open(train_stats_file, 'w').close()
with open(train_stats_file, 'wb') as fout:
pickle.dump(self.stats, fout)
self.logger.info('All pairs avg BLEUs:')
self.logger.info(self.stats['avg_bleus'])
for pair in self.pairs:
self.logger.info('{}:'.format(pair.upper()))
self.logger.info('--> train_smppls: {}'.format(','.join(map(str, self.stats[pair]['train_smppls']))))
self.logger.info('--> train_ppls: {}'.format(','.join(map(str, self.stats[pair]['train_smppls']))))
self.logger.info('--> dev_smppls: {}'.format(','.join(map(str, self.stats[pair]['dev_smppls']))))
self.logger.info('--> dev_ppls: {}'.format(','.join(map(str, self.stats[pair]['dev_ppls']))))
self.logger.info('--> dev_bleus: {}'.format(','.join(map(str, self.stats[pair]['dev_bleus']))))
# translate test
self.logger.info('Translating test file')
for pair in self.pairs:
# Load best ckpt
best_score = max(self.stats[pair]['dev_bleus'])
ckpt_file = join(self.args.dump_dir, '{}-{}.pth'.format(pair, best_score))
self.logger.info('Reload {}'.format(ckpt_file))
self.model.load_state_dict(torch.load(ckpt_file))
src_lang, tgt_lang = pair.split('2')
test_file = join(self.args.data_dir, '{}/test.{}.bpe'.format(pair, src_lang))
self.translate(test_file, src_lang, tgt_lang)
def run_log(self, batch_num, epoch_num):
start = time.time()
batch_data = self.data_manager.get_batch()
src = batch_data['src']
tgt = batch_data['tgt']
targets = batch_data['targets']
src_lang_idx = batch_data['src_lang_idx']
tgt_lang_idx = batch_data['tgt_lang_idx']
pair = batch_data['pair']
logit_mask = batch_data['logit_mask']
# zero grads
self.optimizer.zero_grad()
# move data to GPU
src_cuda = src.to(self.device)
tgt_cuda = tgt.to(self.device, non_blocking=True)
targets_cuda = targets.to(self.device, non_blocking=True)
logit_mask_cuda = logit_mask.to(self.device, non_blocking=True)
# run
ret = self.model(src_cuda, tgt_cuda, targets_cuda, src_lang_idx, tgt_lang_idx, logit_mask_cuda)
opt_loss = ret['opt_loss']
# back-prob
opt_loss.backward()
# clip grad before update
if self.args.clip_grad > 0:
gnorm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip_grad)
else:
gnorm = -1.
# adjust lr before update
self.adjust_lr()
# actually update
self.optimizer.step()
num_words = ret['num_words'].item()
loss = ret['loss'].item()
nll_loss = ret['nll_loss'].item()
# update stats
self.stats['step'] += 1.
self.stats['words'] += num_words
self.stats['time'] += time.time() - start
self.stats['gnorms'].append(gnorm)
# per pair stats
self.stats[pair]['log_loss'] += loss
self.stats[pair]['log_nll_loss'] += nll_loss
self.stats[pair]['log_weight'] += num_words
self.stats[pair]['epoch_loss'] += loss
self.stats[pair]['epoch_nll_loss'] += nll_loss
self.stats[pair]['epoch_weight'] += num_words
# write to logger every now and then
if batch_num % self.log_freq == 0:
self.logger.info('Batch {}/{}, epoch {}/{}'.format(batch_num, self.epoch_size, epoch_num, self.max_epochs))
speed = self.stats['words'] / self.stats['time']
gnorm = self.stats['gnorms'][-1]
self.logger.info(' lr = {0:1.2e}'.format(self.lr))
self.logger.info(' gnorm = {:.2f}'.format(self.stats['gnorms'][-1]))
self.logger.info(' wps = {:.2f}'.format(speed))
# per pair
for pair in self.pairs:
if self.stats[pair]['log_weight'] <= 0:
continue
smppl = self.stats[pair]['log_loss'] / self.stats[pair]['log_weight']
smppl = np.exp(smppl) if smppl < 300 else 1e9
ppl = self.stats[pair]['log_nll_loss'] / self.stats[pair]['log_weight']
ppl = np.exp(ppl) if ppl < 300 else 1e9
self.logger.info(' {}: smppl = {:.3f}, ppl = {:.3f}'.format(pair, smppl, ppl))
self.stats[pair]['log_loss'] = 0.
self.stats[pair]['log_nll_loss'] = 0.
self.stats[pair]['log_weight'] = 0.
def adjust_lr(self):
if self.lr_scheduler == ac.NO_WU:
return
step = self.stats['step'] + 1.
embed_dim = self.args.embed_dim
if step < self.warmup_steps:
# both UPFLAT_WU and ORG_WU follows this lr during warmup
self.lr = self.lr_scale * embed_dim ** -0.5 * step * self.warmup_steps ** -1.5
elif self.lr_scheduler == ac.ORG_WU:
# only ORG_WU decays lr with this formula. UPFLAT_WU decays like NO_WU
self.lr = self.lr_scale * (embed_dim * step) ** -0.5
for p in self.optimizer.param_groups:
p['lr'] = self.lr
def report_epoch(self, epoch_num):
self.logger.info('Finish epoch {}'.format(epoch_num))
speed = self.stats['words'] / self.stats['time']
self.stats['words'] = 0.
self.stats['time'] = 0.
self.logger.info(' wps = {:.2f}'.format(speed))
for pair in self.pairs:
if self.stats[pair]['epoch_weight'] <= 0:
smppl = 1e9
ppl = 1e9
else:
smppl = self.stats[pair]['epoch_loss'] / self.stats[pair]['epoch_weight']
ppl = self.stats[pair]['epoch_nll_loss'] / self.stats[pair]['epoch_weight']
smppl = np.exp(smppl) if smppl < 300 else 1e9
ppl = np.exp(ppl) if ppl < 300 else 1e9
self.stats[pair]['train_smppls'].append(smppl)
self.stats[pair]['train_ppls'].append(ppl)
self.stats[pair]['epoch_loss'] = 0.
self.stats[pair]['epoch_nll_loss'] = 0.
self.stats[pair]['epoch_weight'] = 0.
self.logger.info(' {}: train_smppl={:.3f}, train_ppl={:.3f}'.format(pair, smppl, ppl))
def eval_and_decay(self):
self.eval_ppl()
self.eval_bleu()
# save current ckpt
self.save_ckpt('model')
# save per-language-pair best ckpt
for pair in self.pairs:
if self.stats[pair]['dev_bleus'][-1] == max(self.stats[pair]['dev_bleus']):
# remove previous best ckpt
if len(self.stats[pair]['dev_bleus']) > 1:
self.remove_ckpt(pair, max(self.stats[pair]['dev_bleus'][:-1]))
self.save_ckpt(pair, self.stats[pair]['dev_bleus'][-1])
# save all-language-pair best ckpt
if self.stats['avg_bleus'][-1] == max(self.stats['avg_bleus']):
# remove previous best ckpt
if len(self.stats['avg_bleus']) > 1:
self.remove_ckpt('model', max(self.stats['avg_bleus'][:-1]))
self.save_ckpt('model', self.stats['avg_bleus'][-1])
# it's we do warmup and it's still in warmup phase, don't anneal
if self.lr_scheduler == ac.ORG_WU or self.lr_scheduler == ac.UPFLAT_WU and self.stats['step'] < self.warm_steps:
return
# we decay learning rate wrt avg_bleu
cond = len(self.stats['avg_bleus']) > self.patience and self.stats['avg_bleus'][-1] < min(self.stats['avg_bleus'][-1 - self.patience: -1])
if cond:
past_bleus = self.stats['avg_bleus'][-1 - self.patience:]
past_bleus = map(str, past_bleus)
past_bleus = ','.join(past_bleus)
self.logger.info('Past BLEUs are {}'.format(past_bleus))
self.logger.info('Anneal lr from {} to {}'.format(self.lr, self.lr * self.lr_decay))
self.lr = self.lr * self.lr_decay
for p in self.optimizer.param_groups:
p['lr'] = self.lr
def save_ckpt(self, model_name, score=None):
dump_dir = self.args.dump_dir
if score is None:
ckpt_path = join(dump_dir, '{}.pth'.format(model_name))
self.logger.info('Save current ckpt to {}'.format(ckpt_path))
else:
ckpt_path = join(dump_dir, '{}-{}.pth'.format(model_name, score))
self.logger.info('Save best ckpt for {} to {}'.format(model_name, ckpt_path))
torch.save(self.model.state_dict(), ckpt_path)
def remove_ckpt(self, model_name, score):
# never remove current ckpt so always ask for score
ckpt_path = join(self.args.dump_dir, '{}-{}.pth'.format(model_name, score))
if os.path.exists(ckpt_path):
self.logger.info('rm {}'.format(ckpt_path))
os.remove(ckpt_path)
def eval_ppl(self):
self.logger.info('Evaluate dev perplexity')
start = time.time()
self.model.eval()
with torch.no_grad():
for pair in self.pairs:
src_lang, tgt_lang = pair.split('2')
src_lang_idx = self.data_manager.lang_vocab[src_lang]
tgt_lang_idx = self.data_manager.lang_vocab[tgt_lang]
loss = 0.
nll_loss = 0.
weight = 0.
it = self.data_manager.data[pair][ac.DEV].get_iter()
for src, tgt, targets in it:
src_cuda = src.to(self.device)
tgt_cuda = tgt.to(self.device)
targets_cuda = targets.to(self.device)
logit_mask_cuda = self.data_manager.logit_masks[tgt_lang].to(self.device)
ret = self.model(src_cuda, tgt_cuda, targets_cuda, src_lang_idx, tgt_lang_idx, logit_mask_cuda)
loss += ret['loss'].item()
nll_loss += ret['nll_loss'].item()
weight += ret['num_words'].item()
smppl = loss / weight
smppl = np.exp(smppl) if smppl < 300 else 1e9
ppl = nll_loss / weight
ppl = np.exp(ppl) if ppl < 300 else 1e9
self.stats[pair]['dev_smppls'].append(smppl)
self.stats[pair]['dev_ppls'].append(ppl)
self.logger.info(' {}: dev_smppl={:.3f}, dev_ppl={:.3f}'.format(pair, smppl, ppl))
self.logger.info('It takes {} seconds'.format(int(time.time() - start)))
self.model.train()
def eval_bleu(self):
self.logger.info('Evaluate dev BLEU')
start = time.time()
self.model.eval()
avg_bleus = []
dump_dir = self.args.dump_dir
with torch.no_grad():
for pair in self.pairs:
self.logger.info('--> {}'.format(pair))
src_lang, tgt_lang = pair.split('2')
src_lang_idx = self.data_manager.lang_vocab[src_lang]
tgt_lang_idx = self.data_manager.lang_vocab[tgt_lang]
logit_mask = self.data_manager.logit_masks[tgt_lang]
data = self.data_manager.translate_data[pair]
src_batches = data['src_batches']
sorted_idxs = data['sorted_idxs']
ref_file = data['ref_file']
all_best_trans, all_beam_trans = self._translate(src_batches, sorted_idxs, src_lang_idx, tgt_lang_idx, logit_mask)
all_best_trans = ''.join(all_best_trans)
best_trans_file = join(dump_dir, '{}_val_trans.txt.bpe'.format(pair))
open(best_trans_file, 'w').close()
with open(best_trans_file, 'w') as fout:
fout.write(all_best_trans)
all_beam_trans = ''.join(all_beam_trans)
beam_trans_file = join(dump_dir, '{}_beam_trans.txt.bpe'.format(pair))
open(beam_trans_file, 'w').close()
with open(beam_trans_file, 'w') as fout:
fout.write(all_beam_trans)
# merge BPE
nobpe_best_trans_file = join(dump_dir, '{}_val_trans.txt'.format(pair))
ut.remove_bpe(best_trans_file, nobpe_best_trans_file)
nobpe_beam_trans_file = join(dump_dir, '{}_beam_trans.txt'.format(pair))
ut.remove_bpe(beam_trans_file, nobpe_beam_trans_file)
# calculate BLEU
bleu, msg = ut.calc_bleu(self.args.bleu_script, nobpe_best_trans_file, ref_file)
self.logger.info(msg)
avg_bleus.append(bleu)
self.stats[pair]['dev_bleus'].append(bleu)
# save translation with BLEU score for future reference
trans_file = '{}-{}'.format(nobpe_best_trans_file, bleu)
shutil.copyfile(nobpe_best_trans_file, trans_file)
beam_file = '{}-{}'.format(nobpe_beam_trans_file, bleu)
shutil.copyfile(nobpe_beam_trans_file, beam_file)
avg_bleu = sum(avg_bleus) / len(avg_bleus)
self.stats['avg_bleus'].append(avg_bleu)
self.logger.info('avg_bleu = {}'.format(avg_bleu))
self.logger.info('Done evaluating dev BLEU, it takes {} seconds'.format(ut.format_seconds(time.time() - start)))
def get_trans(self, probs, scores, symbols):
def ids_to_trans(trans_ids):
words = []
for idx in trans_ids:
if idx == ac.EOS_ID:
break
words.append(self.data_manager.ivocab[idx])
return ' '.join(words)
sorted_rows = np.argsort(scores)[::-1]
best_trans = None
beam_trans = []
for i, r in enumerate(sorted_rows):
trans_ids = symbols[r]
trans_out = ids_to_trans(trans_ids)
beam_trans.append('{} ||| {:.3f} {:.3f}'.format(trans_out, scores[r], probs[r]))
if i == 0: # highest prob trans
best_trans = trans_out
return best_trans, '\n'.join(beam_trans)
def _translate(self, src_batches, sorted_idxs, src_lang_idx, tgt_lang_idx, logit_mask):
all_best_trans = [''] * sorted_idxs.shape[0]
all_beam_trans = [''] * sorted_idxs.shape[0]
start = time.time()
count = 0
self.model.eval()
with torch.no_grad():
for src in src_batches:
src_cuda = src.to(self.device)
logit_mask = logit_mask.to(self.device)
ret = self.model.beam_decode(src_cuda, src_lang_idx, tgt_lang_idx, logit_mask)
for x in ret:
probs = x['probs'].cpu().detach().numpy().reshape([-1])
scores = x['scores'].cpu().detach().numpy().reshape([-1])
symbols = x['symbols'].cpu().detach().numpy()
best_trans, beam_trans = self.get_trans(probs, scores, symbols)
all_best_trans[sorted_idxs[count]] = best_trans + '\n'
all_beam_trans[sorted_idxs[count]] = beam_trans + '\n\n'
count += 1
if count % 100 == 0:
self.logger.info(' Translaing line {}, avg {:.2f} sents/second'.format(count, count / (time.time() - start)))
self.model.train()
return all_best_trans, all_beam_trans
def translate(self, src_file, src_lang, tgt_lang, batch_size=4096):
src_batches, sorted_idxs = self.data_manager.get_translate_batches(src_file, batch_size=batch_size)
src_lang_idx = self.data_manager.lang_vocab[src_lang]
tgt_lang_idx = self.data_manager.lang_vocab[tgt_lang]
logit_mask = self.data_manager.logit_masks[tgt_lang]
all_best_trans, all_beam_trans = self._translate(src_batches, sorted_idxs, src_lang_idx, tgt_lang_idx, logit_mask)
# write to file
all_best_trans = ''.join(all_best_trans)
best_trans_file = src_file + '.best_trans'
open(best_trans_file, 'w').close()
with open(best_trans_file, 'w') as fout:
fout.write(all_best_trans)
all_beam_trans = ''.join(all_beam_trans)
beam_trans_file = src_file + '.beam_trans'
open(beam_trans_file, 'w').close()
with open(beam_trans_file, 'w') as fout:
fout.write(all_beam_trans)
self.logger.info('Finish decode {}'.format(src_file))
self.logger.info('Best --> {}'.format(best_trans_file))
self.logger.info('Beam --> {}'.format(beam_trans_file))