-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_slide_window_Train.py
178 lines (147 loc) · 7.75 KB
/
CNN_slide_window_Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import tensorflow as tf
import tempfile
import cv2
import random
import numpy as np
import os
# Copyright 2018 Yang Kaiyu [email protected]
class loadimage():
"""This class is to handle the image loading process"""
def __init__(self, datalist):
"""Init class, datalist is image file's path with label"""
self._data = datalist.copy()
self._rpoint = 0
self._lenth = len(datalist)
def next_batch(self, size=-1):
"""load a certain number of image files and assemble as training data"""
thisbatch = []
if size == -1:
size = self._lenth
while self._rpoint+size >= self._lenth: # handle large batch size
thisbatch = thisbatch + self._data[self._rpoint:]
random.shuffle(self._data)
size -= len(self._data[self._rpoint:])
self._rpoint = 0
thisbatch = thisbatch + self._data[self._rpoint:self._rpoint+size]
self._rpoint += size
imglist = []
taglist = []
for sample in thisbatch: # load image from file
imglist.append(np.expand_dims(np.float32(cv2.imread(sample[0],0))/255,3))
taglist.append(np.array([sample[1],1-sample[1]]))
return (np.array(imglist),np.array(taglist))
def reset(self):
"""reset read pointer and shuffle the data"""
self._rpoint = 0
random.shuffle(self._data)
self._lenth = len(datalist)
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x,W):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(input=x,filter=W,strides=[1, 1, 1, 1],padding="SAME")
def max_pool_def(x,size):
"""max_pool downsamples a feature map by a factor."""
return tf.nn.max_pool(value=x,ksize=[1, size[0], size[1], 1],strides=[1, size[0], size[1], 1],padding="SAME")
####################################################
################Adjustable Features#################
set_name = "Set_regen" # Input training data folder ./set_name
Model_name = "Set_regen" # Output model name ./set_name/Model_name
ClassA_name = "Lambda_train" # Input training data ClassA's folder ./set_name/ClassA_name
ClassB_name = "T7_train" # Input training data ClassB's folder ./set_name/ClassB_name
ClassA_test_name = "Lambda_test" # Input testing data ClassA's folder ./set_name/ClassA_test_name
ClassB_test_name = "T7_test" # Input testing data ClassB's folder ./set_name/ClassA_test_name
train_epoch = 400
batch_size = 50
train_rate = 0.00001
Image_size = [640,160] # [height,width]
pooling_size = [8,4] # downsampling factor
Conv_Kernal_1 = [100,20] # First convolution kernal
Conv_Feature_1 = 32 # First convolution feature number
Conv_Kernal_2 = [10,5] # Second convolution kernal
Conv_Feature_2 = 32 # Second convolution feature number
Ful_Feature = 256 # Fully connected layer feature number
################Adjustable Features#################
####################################################
#####Prepare Data#####
ClassA_train = [["./"+set_name+"/"+ClassA_name+"/"+aname,0] for aname in os.listdir("./"+set_name+"/"+ClassA_name+"/")]
ClassB_train = [["./"+set_name+"/"+ClassB_name+"/"+aname,1] for aname in os.listdir("./"+set_name+"/"+ClassB_name+"/")]
ClassA_test = [["./"+set_name+"/"+ClassA_test_name+"/"+aname,0] for aname in os.listdir("./"+set_name+"/"+ClassA_test_name+"/")]
ClassB_test = [["./"+set_name+"/"+ClassB_test_name+"/"+aname,1] for aname in os.listdir("./"+set_name+"/"+ClassB_test_name+"/")]
print(ClassA_name, "has",len(ClassA_train),"training samples and",len(ClassA_test),"testing samples")
print(ClassB_name, "has",len(ClassB_train),"training samples and",len(ClassB_test),"testing samples")
print("Generate training set")
Train_list = ClassA_train + ClassB_train
random.shuffle(Train_list)
print(len(Train_list),"training samples...Done")
print("Generate testing set")
Test_list = ClassA_test + ClassB_test
random.shuffle(Test_list)
print(len(Test_list),"testing samples...Done")
#######Done#######
print("Prepare image reader")
train_set = loadimage(Train_list)
test_set = loadimage(Test_list)
print("Start building CNN graph")
print("Building input & output placeholder")
x = tf.placeholder(tf.float32, [None, Image_size[0],Image_size[1], 1])
y_ = tf.placeholder(tf.float32, [None, 2])
print("Building First convolution layer")
w_conv1 = weight_variable([Conv_Kernal_1[0], Conv_Kernal_1[1], 1, Conv_Feature_1])
b_conv1 = bias_variable([Conv_Feature_1])
h_conv1 = tf.nn.relu(conv2d(x,w_conv1) + b_conv1)
print("Building First pooling layer")
h_pool1 = max_pool_def(h_conv1,pooling_size)
print("Building Second convolution layer")
w_conv2 = weight_variable([Conv_Kernal_2[0], Conv_Kernal_2[1], Conv_Feature_1, Conv_Feature_2])
b_conv2 = bias_variable([Conv_Feature_2])
h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2) + b_conv2)
print("Building Second pooling layer")
h_pool2 = max_pool_def(h_conv2,pooling_size)
print("Building First Fully connected layer")
w_fc1 = weight_variable([Image_size[0]//(pooling_size[0]*pooling_size[0]) * Image_size[1]//(pooling_size[1]*pooling_size[1]) * Conv_Feature_2, Ful_Feature])
b_fc1 = bias_variable([Ful_Feature])
h_pool2_flat = tf.reshape(h_pool2, [-1, Image_size[0]//(pooling_size[0]*pooling_size[0]) * Image_size[1]//(pooling_size[1]*pooling_size[1]) * Conv_Feature_2])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
print("Building Second Fully connected layer")
w_fc2 = weight_variable([Ful_Feature, 2])
b_fc2 = bias_variable([2])
y_conv = tf.nn.softmax(tf.matmul(h_fc1,w_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.GradientDescentOptimizer(train_rate).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
true_positives = tf.multiply(tf.argmax(y_conv,1),tf.argmax(y_,1))
precision = tf.reduce_sum(tf.cast(true_positives, "float"))/tf.reduce_sum(tf.cast(tf.argmax(y_conv,1), "float"))
recall = tf.reduce_sum(tf.cast(true_positives, "float"))/tf.reduce_sum(tf.cast(tf.argmax(y_,1), "float"))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#####Save graph#####
tf.add_to_collection('x', x)
tf.add_to_collection('y_', y_)
tf.add_to_collection('y_conv', y_conv)
tf.add_to_collection('recall', recall)
tf.add_to_collection('precision', precision)
tf.add_to_collection('accuracy', accuracy)
tf.add_to_collection('train_step', train_step)
saver = tf.train.Saver()
saver.export_meta_graph("./"+set_name+"/"+Model_name+".meta")
#####Done#####
log_file = open("./"+set_name+"/log.csv",'w', buffering=1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(train_epoch):
batch = train_set.next_batch(batch_size)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
if i % 10 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1]})
test = test_set.next_batch(batch_size)
test_recall, test_precision, test_accuracy = sess.run([recall, precision, accuracy],{x: test[0], y_: test[1]})
print('step %d, training accuracy %g, test accuracy %g, recall %g, precision %g' % (i, train_accuracy, test_accuracy, test_recall,test_precision))
log_file.write('%d, %g, %g, %g, %g\n' % (i, train_accuracy, test_accuracy, test_recall, test_precision))
saver.save(sess,"./"+set_name+"/"+Model_name)
log_file.close()