-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpc_speed_control.m
313 lines (272 loc) · 11.2 KB
/
mpc_speed_control.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
function [sys,x0,str,ts] =mpc_speed_control(t,x,u,flag)
%***************************************************************%
% Input:
% t是采样时间, x是状态变量, u是输入(是做成simulink模块的输入,即CarSim的输出),
% flag是仿真过程中的状态标志(以它来判断当前是初始化还是运行等)
% Output:
% sys输出根据flag的不同而不同(下面将结合flag来讲sys的含义),
% x0是状态变量的初始值,
% str是保留参数,设置为空
% ts是一个1×2的向量, ts(1)是采样周期, ts(2)是偏移量
%---------------------------------------------------------------%
% Published by: Kai Liu
% Email:[email protected]
% My github: https://github.com/leoking99-BIT
%***************************************************************%
switch flag,
case 0 % Initialization %
[sys,x0,str,ts] = mdlInitializeSizes; % Initialization
case 2 % Update %
sys = mdlUpdates(t,x,u); % Update discrete states
case 3 % Outputs %
sys = mdlOutputs(t,x,u); % Calculate outputs
case {1,4,9} % Unused flags
sys = [];
otherwise % Unexpected flags %
error(['unhandled flag = ',num2str(flag)]); % Error handling
end % end of switch
% End sfuntmpl
%==============================================================
% Initialization, flag = 0,mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%==============================================================
function [sys,x0,str,ts] = mdlInitializeSizes
sizes = simsizes;%用于设置模块参数的结构体用simsizes来生成
sizes.NumContStates = 0; %模块连续状态变量的个数
sizes.NumDiscStates = 2; %模块离散状态变量的个数,实际上没有用到这个数值,只是用这个来表示离散模块
sizes.NumOutputs = 2; %S函数的输出,包括控制量和其它监测量
sizes.NumInputs = 3; %S函数模块输入变量的个数,即CarSim的输出量
sizes.DirFeedthrough = 1; %模块是否存在直接贯通(direct feedthrough). 1 means there is direct feedthrough.
% 直接馈通表示系统的输出或可变采样时间是否受到输入的控制。
% a. 输出函数(mdlOutputs或flag==3)是输入u的函数。即,如果输入u在mdlOutputs中被访问,则存在直接馈通。
% b. 对于一个变步长S-Function的“下一个采样时间”函数(mdlGetTimeOfNextVarHit或flag==4)中可以访问输入u。
% 正确设置直接馈通标志是十分重要的,因为它影响模型中块的执行顺序,并可用检测代数环。
sizes.NumSampleTimes = 1; %模块的采样次数,>=1
sys = simsizes(sizes); %设置完后赋给sys输出
x0 = zeros(sizes.NumDiscStates,1);%initial the state vector, of no use
str = []; % 保留参数,Set str to an empty matrix.
ts = [0.05 0]; % ts=[period, offset].采样周期sample time=0.05,50ms
%--Global parameters and initialization
global InitialGapflag;
InitialGapflag = 0; % the first few inputs don't count. Gap it.
global MPCParameters;
MPCParameters.Np = 30;% predictive horizon预测时域
MPCParameters.Nc = 30;% control horizon控制时域
MPCParameters.Nx = 2; %number of state variables状态变量
MPCParameters.Nu = 1; %number of control inputs
MPCParameters.Ny = 1; %number of output variables
MPCParameters.Ts = 0.01; %Set the sample time
MPCParameters.Q = 2000; % cost weight factor 10000
MPCParameters.R = 10; % cost weight factor
MPCParameters.S = 1; % cost weight factor
MPCParameters.umin = -5.0; % the min of deceleration
MPCParameters.umax = 3.5; % the max of acceleration
% MPCParameters.umin = 0.0; % the min of deceleration
% MPCParameters.umax = 0; % the max of acceleration
MPCParameters.dumin = -5.0; % minimum limits of jerk
MPCParameters.dumax = 5.0; % maximum limits of jerk
global WarmStart;
WarmStart = zeros(MPCParameters.Np,1);
% End of mdlInitializeSizes
%==============================================================
% Update the discrete states, flag = 2, mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%==============================================================
function sys = mdlUpdates(t,x,u)
% 基本没有用到这个过程;在后期的程序模块化时可以继续开发这个功能。
sys = x;
% End of mdlUpdate.
%==============================================================
% Calculate outputs, flag = 3, mdlOutputs
% Return the block outputs.
%==============================================================
function sys = mdlOutputs(t,x,u)
global InitialGapflag;
global MPCParameters;
global WarmStart;
Vx = 0;
a_x = 0;
a_des = 0;
t_Start = tic; % 开始计时
if InitialGapflag < 2 % get rid of the first two inputs
InitialGapflag = InitialGapflag + 1;%
else
InitialGapflag = InitialGapflag + 1;
%***********Step (1). Update vehicle states *************************%
Vx = u(1)/3.6; %车辆纵向速度,单位:km/h-->m/s
a_x = u(2)*9.8; %车辆纵向加速度,单位:g's-->m/s2
kesi = [Vx; a_x]; %更新车辆状态向量
%********Step(2): Generate reference speed profile *******************%
%----设定阶梯式的期望速度曲线----------------------%
SpeedProfile = func_ConstantSpeed(InitialGapflag, MPCParameters,u);
%****Step(3): update longitudinal vehilce model with inertial delay***%
Ts = MPCParameters.Ts; % 50ms
StateSpaceModel.A = [1 Ts;
0 1];
StateSpaceModel.B = [0; 1];
StateSpaceModel.C = [1, 0];
%****Step(4): MPC formulation;********************%
%Update Theta and PHI for future states prediction
[PHI, THETA] = func_Update_PHI_THETA(StateSpaceModel, MPCParameters);
%Update H and f for cost function J
[H, f, g] = func_Update_H_f(kesi, SpeedProfile, PHI, THETA, MPCParameters);
%****Step(5): Call qp-solver********************%
[A, b, Aeq, beq, lb, ub] = func_Constraints_du_quadprog(MPCParameters, a_x);
options = optimset('Display','off', ... %使用最优控制选项进行求解最小值
'TolFun', 1e-8, ...
'MaxIter', 2000, ...
'Algorithm', 'interior-point-convex', ...
'FinDiffType', 'forward', ...
'RelLineSrchBnd', [], ...
'RelLineSrchBndDuration', 1, ...
'TolConSQP', 1e-8);
warning off all % close the warnings during computation
U0 = WarmStart;
[U, FVAL, EXITFLAG] = quadprog(H, g, A, b, Aeq, beq, lb, ub, U0, options);
WarmStart = shiftHorizon(U); % Prepare restart, nominal close loop
if (1 ~= EXITFLAG) %if optimization NOT succeeded.
U(1) = 0.0;
fprintf('MPC solver not converged!\n');
end
a_des = U(1);%输出的是控制量增量序列,只将第一个量用于输出进行控制
end
%****Step(6): 由期望的加速度生成Throttle和Brake;********************%
[Throttle, Brake] = func_AccelerationTrackingController(a_des);
t_Elapsed = toc( t_Start ); %computation time
%%输出节气门 刹车 时域 速度
sys = [Vx; a_des];
% end %End of mdlOutputs.
function [Vref] = func_ConstantSpeed(InitialGapflag, MPCParameters,u)
% 生成阶梯形式的期望速度曲线
% Ts = MPCParameters.Ts; %采样时间=0.05,unit: s
% Np = MPCParameters.Np; % 预测时域:30
% Vref = cell(Np,1);
%
% % 自定义阶梯的形式
% if InitialGapflag < 400
% Vset = 10;
% else
% if InitialGapflag < 800
% Vset = 20;
% else
% if InitialGapflag < 1500
% Vset = 10;
% else
% Vset = 5;
% end
% end
% end
Vset=10;
for i = 1:1:30
Vref{i,1} = u(3);
end
% end %EoF
function [Throttle, Brake] = func_AccelerationTrackingController(ahopt)
% 车辆下位控制器将期望加速度转化为油门控制量和制动主缸压力控制量
K_brake = 0.3;
K_throttle = 0.1; %0.05;
Brake_Sat = 15;
Throttle_Sat = 1;
if ahopt < 0 % Brake control
Brake = K_brake * ahopt;
if Brake > Brake_Sat
Brake = Brake_Sat;
end
Throttle = 0;
else % throttle control
Brake = 0;
Throttle = K_throttle *ahopt;
if Throttle > Throttle_Sat
Throttle = Throttle_Sat;
end
if Throttle < 0
Throttle = 0;
end
end
% end %EoF
function u0 = shiftHorizon(u) %shift control horizon
u0 = [u(:,2:size(u,2)), u(:,size(u,2))]; % size(u,2)) 矩阵u的列数
function [PHI, THETA] = func_Update_PHI_THETA(StateSpaceModel, MPCParameters)
%***************************************************************%
% 预测输出表达式 Y(t)=PHI*kesi(t)+THETA*DU(t)
% Y(t) = [Eta(t+1|t) Eta(t+2|t) Eta(t+3|t) ... Eta(t+Np|t)]'
%***************************************************************%
Np = MPCParameters.Np;
Nc = MPCParameters.Nc;
Nx = MPCParameters.Nx;
Ny = MPCParameters.Ny;
Nu = MPCParameters.Nu;
A = StateSpaceModel.A;
B = StateSpaceModel.B;
C = StateSpaceModel.C;
PHI_cell=cell(Np,1); %PHI=[CA CA^2 CA^3 ... CA^Np]' 元胞数组
THETA_cell=cell(Np,Nc); %THETA
for j=1:1:Np
PHI_cell{j,1}=C*A^j; % demision:Ny* Nx
for k=1:1:Nc
if k<=j
THETA_cell{j,k}=C*A^(j-k)*B; % demision:Ny*Nu
else
THETA_cell{j,k}=zeros(Ny,Nu);
end
end
end
PHI=cell2mat(PHI_cell); % size(PHI)=[(Ny*Np) * Nx]
THETA=cell2mat(THETA_cell);% size(THETA)=[Ny*Np Nu*Nc]
% end %EoF
function[H, f, g] = func_Update_H_f(kesi, SpeedProfile, PHI, THETA, MPCParameters)
%***************************************************************%
% trajectory planning
%***************************************************************%
Np = MPCParameters.Np;
Nc = MPCParameters.Nc;
Q = MPCParameters.Q;
R = MPCParameters.R;
Qq = kron(eye(Np),Q); % Q = [Np*Nx] * [Np*Nx]
Rr = kron(eye(Nc),R); % R = [Nc*Nu] * [Nc*Nu]
Vref = cell2mat(SpeedProfile); %期望值
error = PHI * kesi; %[(Nx*Np) * 1]
H = THETA'*Qq*THETA + Rr;
f = (error' - Vref')*Qq*THETA;
g = f';
% end %EoF
function [A, b, Aeq, beq, lb, ub] = func_Constraints_du_quadprog(MPCParameters, um)
%************************************************************************%
% generate the constraints of the vehicle
%
%************************************************************************%
Np = MPCParameters.Np;
Nc = Np;
dumax = MPCParameters.dumax;
umin = MPCParameters.umin;
umax = MPCParameters.umax;
Umin = kron(ones(Nc,1),umin);
Umax = kron(ones(Nc,1),umax);
Ut = kron(ones(Nc,1),um);
%----(1) A*x<=b----------%
A_t=zeros(Nc,Nc);
for p=1:1:Nc
for q=1:1:Nc
if p >= q
A_t(p,q)=1;
else
A_t(p,q)=0;
end
end
end
A_cell=cell(2,1);
A_cell{1,1} = A_t; %
A_cell{2,1} = -A_t;
A=cell2mat(A_cell); %
b_cell=cell(2, 1);
b_cell{1,1} = Umax - Ut; %
b_cell{2,1} = -Umin + Ut;
b=cell2mat(b_cell); %
%----(2) Aeq*x=beq----------%
Aeq = [];
beq = [];
%----(3) lb=<x<=ub----------%
lb=kron(ones(Nc,1),-dumax);
ub=kron(ones(Nc,1),dumax);
% end %EoF