-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathday_4.py
98 lines (84 loc) · 2.12 KB
/
day_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
)
]
)
trainset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=False,
transform=transform
)
testset = torchvision.datasets.CIFAR10(
root='./data',
train=False,
download=False,
transform=transform
)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)
testloader = torch.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)
classes = (
'plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=0.001
)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# data = (inputs, labels)
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
running_loss = running_loss + loss.item()
if i % 2000 == 1999:
print(
'[%d, %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss/2000)
)
running_loss = 0.0
print("vola")