-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetBASA.py
executable file
·787 lines (721 loc) · 33.6 KB
/
getBASA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
import freesasa
import re
import os
import subprocess
import json
import math
from Bio.PDB import NeighborSearch
from dnaprodb_utils import CHAIN_RE, RESN_RE, RESI_RE, ATOM_RE, ID_RE, INS_RE
from dnaprodb_utils import roundFloats
from dnaprodb_utils import residueMoiety
from dnaprodb_utils import nucleotideMoiety
from dnaprodb_utils import getCM
from dnaprodb_utils import log, getID, C
from dnaprodb_utils import getStructureFromModel
nucGrvLabel = C["NUC_MTY_LABEL_DS"]
nucMtyLabel = C["NUC_MTY_LABEL_SS"]
resMtyLabel = C["RES_MTY_LABEL"]
resSST = C["RES_SST"]
regexFieldKeyMap = {
"atom_name": re.compile(ATOM_RE),
"res_name": re.compile(RESN_RE),
"res_num": re.compile(RESI_RE),
"chain_id": re.compile(CHAIN_RE),
"res_id": re.compile(ID_RE),
"ins_code": re.compile(INS_RE)
}
class MatchField(object):
def __init__(self, components=None, nucleotides=None, field=None, field_values=None):
self.flag = None # set to decide what to do with search
if(components is not None):
if(field is None):
raise ValueError("Argument 'field' must be set when \
specifying component look-up!")
self.components = components
self.flag = "component_lookup"
self.field = field
self.field_value = field_value
elif(nucleotides is not None):
if(field is None):
raise ValueError("Argument 'field' must be set when \
specifying nucleotide lookup!")
self.nucleotides = nucleotides
self.flag = "nucleotide_lookup"
def search(self, arg):
if(self.flag == "component_lookup"):
return self.components[arg][self.field] in self.field_values
elif(self.flag == "nucleotide_lookup"):
return self.nucleotides[arg][self.field] in self.field_values
class GeneralClassifier(freesasa.Classifier):
def initialize(self, DATA_PATH, COMPONENTS, fileName='vdw-radii.json'):
self.components = COMPONENTS
with open(os.path.join(DATA_PATH, fileName)) as FILE:
self.radii = json.load(FILE)
def radius(self, residueName, atomName):
rName = residueName.strip()
aName = atomName.strip()
if(rName in self.radii):
# Standard Residue
if(aName in self.radii[rName]):
return self.radii[rName][aName]
elif self.getElement(rName, atomName) == "H": ## fix H key error
return 0.53
else:
return self.radii['element'][self.getElement(rName, atomName)]
elif(rName in self.components):
# Non-standard known residue
parent = self.components[rName]['_chem_comp.mon_nstd_parent_comp_id']
if(parent in self.radii and aName in self.radii[parent]):
return self.radii[parent][aName]
elif self.getElement(rName, atomName) == "H": ## Fix H key error
return 0.53
else:
return self.radii['element'][self.getElement(rName, atomName)]
else:
# Unknown residue - make best guess for atom element
print(("Unknown residue: {}".format(rName)))
return self.radii['element'][self.guessElement(atomName)]
def classify(self, residueName, atomName):
return "atom"
def getElement(self, residueName, atomName):
aName = atomName.strip()
if(residueName in self.components):
try:
index = self.components[residueName]['_chem_comp_atom.atom_id'].index(aName)
return self.components[residueName]['_chem_comp_atom.type_symbol'][index]
except:
return self.guessElement(atomName)
else:
return self.guessElement(atomName)
def guessElement(self, atomName):
"""Tries to guess element from atom name if not recognised."""
print(("Got :{}".format(atomName)))
name = atomName.strip()
if name.capitalize() not in self.radii["element"]:
# Inorganic elements have their name shifted left by one position
# (is a convention in PDB, but not part of the standard).
# isdigit() check on last two characters to avoid mis-assignment of
# hydrogens atoms (GLN HE21 for example)
if atomName[0].isalpha() and not (atomName[2:].isdigit() or atomName[2:] == "''"):
putative_element = name
else:
# Hs may have digit in first position
if name[0].isdigit():
putative_element = name[1]
else:
putative_element = name[0]
if putative_element.capitalize() in self.radii["element"]:
element = putative_element
else:
element = ""
print(("Guessed(e): {}".format(element)))
return element
else:
print(("Guessed(n): {}".format(name)))
return name
def sumSASA(structure, result, REGEXES, IDs):
N = structure.nAtoms()
SUM = {}
for i in range(N):
resn = structure.residueName(i).strip()
resi = structure.residueNumber(i).strip()
chain = structure.chainLabel(i)
aname = structure.atomName(i).strip()
if(resi[-1].isdigit()):
ins = " "
else:
ins = resi[-1]
resi = resi[:-1]
rid = getID(chain, resi, ins)
if(rid not in IDs):
continue
# Get regexes
if(REGEXES.isProtein(resn)):
# This is a peptide-linking residue
classes = REGEXES[resn]
nc = len(classes)
elif(REGEXES.isDNA(resn)):
# This is a DNA-linking nucleotide
classes = REGEXES[rid]
nc = len(classes)
else:
raise ValueError("Neither residue name '{}' or residue id '{}' found!".format(resn, rid))
sasa = result.atomArea(i)
if(rid not in SUM):
SUM[rid] = {
'sasa': [0.0]*(nc+1),
'resn': resn,
'chain': chain,
'resi': resi,
'ins': ins,
'id': rid
}
SUM[rid]['sasa'][0] += sasa
for j in range(nc):
if(classes[j].search(aname)):
SUM[rid]['sasa'][j+1] += sasa
break
return SUM
def makeRegexField(field_key, aname, resn, resi, chain, ins):
if(field_key == "atom_name"):
return aname
elif(field_key == "res_name"):
return resn
elif(field_key == "res_num"):
return resi
elif(field_key == "chain_id"):
return chain
elif(field_key == "res_id"):
return "{}.{}.{}".format(chain, resi, ins)
elif(field_key == "ins_code"):
return ins
def buildStructure(template, IDs,
in_regex=None,
ex_regex=None,
field_keys=["atom_name", "res_name", "res_num", "chain_id"]
):
if(in_regex is None):
in_regex = [[]]
for fk in field_keys:
in_regex[0].append(regexFieldKeyMap[fk])
if(ex_regex is None):
ex_regex = [['(?!.*)']*len(field_keys)]
# Compile Expressions
for regex in in_regex:
# check that regex list matches field_keys
if(len(regex) != len(field_keys)):
raise ValueError("Length of regex lists and field_keys must match!")
for i in range(len(regex)):
if(isinstance(regex[i], re.Pattern) or isinstance(regex[i], MatchField)):
continue
regex[i] = re.compile(regex[i])
for regex in ex_regex:
# check that regex list matches field_keys
if(len(regex) != len(field_keys)):
raise ValueError("Length of regex lists and field_keys must match!")
for i in range(len(regex)):
if(isinstance(regex[i], re.Pattern) or isinstance(regex[i], MatchField)):
continue
regex[i] = re.compile(regex[i])
N = template.nAtoms()
structure = freesasa.Structure()
for i in range(N):
IMATCH = False
EMATCH = False
resn = template.residueName(i)
resi = template.residueNumber(i)
chain = template.chainLabel(i)
aname = template.atomName(i)
resn_s = resn.strip()
resi_s = resi.strip()
aname_s = aname.strip()
if(resi_s[-1].isdigit()):
ins = " "
else:
ins = resi_s[-1]
resi_s = resi_s[:-1]
rid = getID(chain, resi_s, ins)
if(rid not in IDs):
continue
for regex in in_regex:
matches = []
for j in range(len(regex)):
# every regex will be the same length as field_keys
matches.append(regex[j].search(makeRegexField(field_keys[j], aname_s, resn_s, resi_s, chain, ins)))
if all(matches):
IMATCH = True
break
for regex in ex_regex:
matches = []
for j in range(len(regex)):
# every regex will be the same length as field_keys
matches.append(regex[j].search(makeRegexField(field_keys[j], aname_s, resn_s, resi_s, chain, ins)))
if all(matches):
EMATCH = True
break
if(IMATCH and not EMATCH):
coord = template.coord(i)
structure.addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
return structure
def getComplexBASA(model, classifier, REGEXES, NUCLEOTIDES, IDS, INT_IDS, dssp=None, detailed=False):
# Initialize Structures
opts = freesasa.Parameters(param={'n-slices': 50})
try:
com = getStructureFromModel(model, classifier)
except AssertionError:
log("Invalid atom/residue combination. All atom/residue names should follow standard PDB conventions.", model.get_parent().get_id())
pro = freesasa.Structure()
dna = freesasa.Structure()
if(detailed):
com_helix = freesasa.Structure() # complex with only helical DNA
com_other = freesasa.Structure() # complex with only non-helical DNA
# Helical DNA-protein complex
pro_grc = [ # [ wg, sg, sr, pp ]
freesasa.Structure(),
freesasa.Structure(),
freesasa.Structure(),
freesasa.Structure()
]
# Non-helical DNA-protein complex
pro_ssc = [ # [ bs, sr, pp ]
freesasa.Structure(),
freesasa.Structure(),
freesasa.Structure()
]
# DNA-SSE complex
dna_ssc = [ # [ H, S, L ]
freesasa.Structure(),
freesasa.Structure(),
freesasa.Structure()
]
# Generate ids of all nearby residues and nucleotides in the interface
# (this increases perfomance)
COMPLEX_IDS = set()
atoms = []
for chain in model.get_list():
for residue in chain.get_list():
for atom in residue.get_list():
if(atom.element == 'H'):
continue
atoms.append(atom)
ns = NeighborSearch(atoms)
for resID in INT_IDS["complex_ids"]:
ch, resi, ins = resID.split('.')
residue = model[ch][(' ', int(resi), ins)]
cm = getCM(residue)
neighbors = ns.search(cm, 20.0, level='R')
for n in neighbors:
nid = getID(residue=n)
COMPLEX_IDS.add(nid)
# Build Structures
N = com.nAtoms()
for i in range(N):
resn = com.residueName(i)
if(REGEXES.isProtein(resn)):
coord = com.coord(i)
resi = com.residueNumber(i)
chain = com.chainLabel(i)
aname = com.atomName(i)
# Add atoms to relevant structures
pro.addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
if(detailed and rid in COMPLEX_IDS):
resi_s = resi.strip()
if(resi_s[-1].isdigit()):
ins = " "
else:
ins = resi_s[-1]
resi_s = resi_s[:-1]
rid = getID(chain, resi_s, ins)
if(rid in dssp):
ss = dssp[rid]
else:
ss = 'L'
com_helix.addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
com_other.addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
for j in range(len(pro_grc)):
pro_grc[j].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
for j in range(len(pro_ssc)):
pro_ssc[j].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
if(ss == 'H'):
# exclude helix atoms
dna_ssc[1].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
dna_ssc[2].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(ss == 'S'):
# exclude strand atoms
dna_ssc[2].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
dna_ssc[0].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(ss == 'L'):
# exclude loop atoms
dna_ssc[0].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
dna_ssc[1].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(REGEXES.isDNA(resn)):
coord = com.coord(i)
resi = com.residueNumber(i)
chain = com.chainLabel(i)
aname = com.atomName(i)
# Add atoms to relevant structures
dna.addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
if(detailed and nid in COMPLEX_IDS):
aname_s = aname.strip()
resi_s = resi.strip()
if(resi_s[-1].isdigit()):
ins = " "
else:
ins = resi_s[-1]
resi_s = resi_s[:-1]
nid = getID(chain, resi_s, ins)
for j in range(3):
dna_ssc[j].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
if(nid in NUCLEOTIDES and NUCLEOTIDES[nid]["secondary_structure"] == "helical"):
com_helix.addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
# Helical DNA (Major/Minor groove defined)
if(REGEXES[nid][0].search(aname_s)):
# exclude Major groove atoms
pro_grc[1].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[2].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[3].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(REGEXES[nid][1].search(aname_s)):
# exclude Minor groove atoms
pro_grc[0].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[2].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[3].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(REGEXES[nid][2].search(aname_s)):
# exclude Sugar atoms
pro_grc[0].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[1].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[3].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(REGEXES[nid][3].search(aname_s)):
# exclude Phosphate atoms
pro_grc[0].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[1].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_grc[2].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
else:
com_other.addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
# Non-helical DNA
if(REGEXES[nid][0].search(aname_s)):
# exclude Base atoms
pro_ssc[1].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_ssc[2].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(REGEXES[nid][1].search(aname_s)):
# exclude Sugar atoms
pro_ssc[0].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_ssc[2].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
elif(REGEXES[nid][2].search(aname_s)):
# exclude Phosphate atoms
pro_ssc[0].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
pro_ssc[1].addAtom(aname, resn, resi, chain, coord[0], coord[1], coord[2])
# Set up classifiers for each structure
com.setRadiiWithClassifier(classifier)
pro.setRadiiWithClassifier(classifier)
dna.setRadiiWithClassifier(classifier)
if(detailed):
com_helix.setRadiiWithClassifier(classifier)
com_other.setRadiiWithClassifier(classifier)
for i in range(len(pro_grc)):
pro_grc[i].setRadiiWithClassifier(classifier)
for i in range(len(pro_ssc)):
pro_ssc[i].setRadiiWithClassifier(classifier)
for i in range(len(dna_ssc)):
dna_ssc[i].setRadiiWithClassifier(classifier)
# Run BASA calculations
com_sasa = freesasa.calc(com, parameters=opts)
pro_sasa = freesasa.calc(pro, parameters=opts)
dna_sasa = freesasa.calc(dna, parameters=opts)
if(detailed):
com_helix_sasa = freesasa.calc(com_helix, parameters=opts)
com_other_sasa = freesasa.calc(com_other, parameters=opts)
dna_ssc_sasa = []
pro_grc_sasa = []
pro_ssc_sasa = []
for i in range(len(pro_grc)):
pro_grc_sasa.append(freesasa.calc(pro_grc[i], parameters=opts))
for i in range(len(pro_ssc)):
pro_ssc_sasa.append(freesasa.calc(pro_ssc[i], parameters=opts))
for i in range(len(dna_ssc)):
dna_ssc_sasa.append(freesasa.calc(dna_ssc[i], parameters=opts))
IN_LIST = []
# Get Residue BASA values
RES = {}
RES_COMPLEX_SASA = sumSASA(com, com_sasa, REGEXES, IDS['protein'])
RES_PROTEIN_SASA = sumSASA(pro, pro_sasa, REGEXES, IDS['protein'])
if(detailed):
RES_COM_HELIX_SASA = sumSASA(com_helix, com_helix_sasa, REGEXES, IDS['protein'])
RES_COM_OTHER_SASA = sumSASA(com_other, com_other_sasa, REGEXES, IDS['protein'])
RES_GRC_SASA = []
RES_SSC_SASA = []
for i in range(len(pro_grc)):
RES_GRC_SASA.append(sumSASA(pro_grc[i], pro_grc_sasa[i], REGEXES, IDS['protein']))
for i in range(len(pro_ssc)):
RES_SSC_SASA.append(sumSASA(pro_ssc[i], pro_ssc_sasa[i], REGEXES, IDS['protein']))
for key in RES_COMPLEX_SASA:
basa = RES_PROTEIN_SASA[key]['sasa'][0]-RES_COMPLEX_SASA[key]['sasa'][0]
# Compute the various BASA, SASA and FASA components
RES[key] = {
'resn': RES_COMPLEX_SASA[key]['resn'],
'resi': RES_COMPLEX_SASA[key]['resi'],
'id': RES_COMPLEX_SASA[key]['id'],
'ins': RES_COMPLEX_SASA[key]['ins'],
'chain': RES_COMPLEX_SASA[key]['chain'],
'fasa': {
'total': RES_PROTEIN_SASA[key]['sasa'][0],
'mc': RES_PROTEIN_SASA[key]['sasa'][1],
'sc': RES_PROTEIN_SASA[key]['sasa'][2]
},
'sasa':{
'total': RES_COMPLEX_SASA[key]['sasa'][0],
'mc': RES_COMPLEX_SASA[key]['sasa'][1],
'sc':RES_COMPLEX_SASA[key]['sasa'][2]
},
'basa': {
'total': basa,
'mc': RES_PROTEIN_SASA[key]['sasa'][1]-RES_COMPLEX_SASA[key]['sasa'][1],
'sc': RES_PROTEIN_SASA[key]['sasa'][2]-RES_COMPLEX_SASA[key]['sasa'][2],
}
}
# Set up keys and values
if(detailed):
RES[key]['basa']['dna_moieties'] = {}
for i in range(len(resMtyLabel)):
RES[key]['basa']['dna_moieties'][resMtyLabel[i]] = {}
for j in range(len(nucGrvLabel)):
RES[key]['basa']['dna_moieties'][resMtyLabel[i]][nucGrvLabel[j]] = 0.0
for j in range(len(nucMtyLabel)):
RES[key]['basa']['dna_moieties'][resMtyLabel[i]][nucMtyLabel[j]] = 0.0
# Helical DNA segements
for i in range(len(resMtyLabel)):
for j in range(len(nucGrvLabel)):
if(key in INT_IDS["res_ids"]):
RES[key]['basa']['dna_moieties'][resMtyLabel[i]][nucGrvLabel[j]] += RES_GRC_SASA[j][key]['sasa'][i+1]-RES_COM_HELIX_SASA[key]['sasa'][i+1]
# Non-helical DNA segements
for i in range(len(resMtyLabel)):
for j in range(len(nucMtyLabel)):
if(key in INT_IDS["res_ids"]):
RES[key]['basa']['dna_moieties'][resMtyLabel[i]][nucMtyLabel[j]] += RES_SSC_SASA[j][key]['sasa'][i+1]-RES_COM_OTHER_SASA[key]['sasa'][i+1]
# Get Nucleotide BASA values
NUC = {}
NUC_COMPLEX_SASA = sumSASA(com, com_sasa, REGEXES, IDS['dna'])
NUC_DNA_SASA = sumSASA(dna, dna_sasa, REGEXES, IDS['dna'])
if(detailed):
NUC_SSC_SASA = []
for i in range(3):
NUC_SSC_SASA.append(sumSASA(dna_ssc[i], dna_ssc_sasa[i], REGEXES, IDS['dna']))
for key in NUC_COMPLEX_SASA:
basa = NUC_DNA_SASA[key]['sasa'][0]-NUC_COMPLEX_SASA[key]['sasa'][0]
NUC[key] = {
'nucn': NUC_COMPLEX_SASA[key]['resn'],
'nuci': NUC_COMPLEX_SASA[key]['resi'],
'chain': NUC_COMPLEX_SASA[key]['chain'],
'id': NUC_COMPLEX_SASA[key]['id'],
'ins': NUC_COMPLEX_SASA[key]['ins'],
'fasa': {
'total': NUC_DNA_SASA[key]['sasa'][0],
},
'sasa': {
'total': NUC_COMPLEX_SASA[key]['sasa'][0],
},
'basa': {
'total': basa
}
}
if(NUCLEOTIDES[key]["secondary_structure"] == "helical"):
labels = nucGrvLabel
else:
labels = nucMtyLabel
for i in range(1, len(labels)+1):
NUC[key]['fasa'][labels[i-1]] = NUC_DNA_SASA[key]['sasa'][i]
NUC[key]['sasa'][labels[i-1]] = NUC_COMPLEX_SASA[key]['sasa'][i]
NUC[key]['basa'][labels[i-1]] = NUC_DNA_SASA[key]['sasa'][i] - NUC_COMPLEX_SASA[key]['sasa'][i]
if(detailed):
NUC[key]['basa']['secondary_structure'] = {}
for i in range(1, len(labels)+1):
NUC[key]['basa']['secondary_structure'][labels[i-1]] = {}
for j in range(len(resSST)):
if(key in INT_IDS["nuc_ids"]):
NUC[key]['basa']['secondary_structure'][labels[i-1]][resSST[j]] = NUC_SSC_SASA[j][key]['sasa'][i]-NUC_COMPLEX_SASA[key]['sasa'][i]
else:
NUC[key]['basa']['secondary_structure'][labels[i-1]][resSST[j]] = 0.0
# Calculate Interaction BASA
INT = {}
# Calculate the components B^(Nj)_g(Ri) and B^(Nj)_g,m(Ri), the BASA components of nucleotide Nj due to residue Ri
for rkey in RES:
if(RES[rkey]['basa']['total'] > 0 and rkey in INT_IDS["res_ids"]):
# Calculate B^(Nj)_g(Ri)
S = buildStructure(com, COMPLEX_IDS, ex_regex=[[rkey]], field_keys=["res_id"])
S.setRadiiWithClassifier(classifier)
SASA = sumSASA(S, freesasa.calc(S, parameters=opts), REGEXES, IDS['dna'])
for nkey in SASA:
if(nkey in NUC and nkey in INT_IDS["nuc_ids"] and NUC[nkey]['basa']['total'] > 0):
if(NUCLEOTIDES[nkey]["secondary_structure"] == "helical"):
nucLabels = nucGrvLabel
else:
nucLabels = nucMtyLabel
INT[rkey+nkey] = {
'res_id': rkey,
'res_name': RES[rkey]['resn'],
'res_number': RES[rkey]['resi'],
'res_chain': RES[rkey]['chain'],
'nuc_id': nkey,
'nuc_name': NUC[nkey]['nucn'],
'nuc_number': NUC[nkey]['nuci'],
'nuc_chain': NUC[nkey]['chain'],
'nuc_basa': {
'total': SASA[nkey]['sasa'][0] - NUC[nkey]['sasa']['total'],
},
'res_basa': {
'total': None,
'mc': None,
'sc': None
},
'basa': {
'total': SASA[nkey]['sasa'][0] - NUC[nkey]['sasa']['total'],
}
}
# Add nucleotide BASA
for i in range(1, len(nucLabels)+1):
INT[rkey+nkey]['nuc_basa'][nucLabels[i-1]] = SASA[nkey]['sasa'][i] - NUC[nkey]['sasa'][nucLabels[i-1]]
# Add joint BASA
for i in range(len(nucLabels)):
INT[rkey+nkey]['basa'][nucLabels[i]] = {}
for j in range(len(resMtyLabel)):
INT[rkey+nkey]['basa'][nucLabels[i]][resMtyLabel[j]] = 0.0
# Calculate B^(Nj)_g,m(Ri)
for i in range(len(resMtyLabel)):
m = resMtyLabel[i]
S = buildStructure(com, COMPLEX_IDS, ex_regex=[[REGEXES[RES[rkey]['resn']][i], rkey]], field_keys=["atom_name", "res_id"])
S.setRadiiWithClassifier(classifier)
SASA = sumSASA(S, freesasa.calc(S, parameters=opts), REGEXES, IDS['dna'])
for nkey in SASA:
if(nkey in NUC and NUC[nkey]['basa']['total'] > 0 and nkey in INT_IDS["nuc_ids"]):
if(NUCLEOTIDES[nkey]["secondary_structure"] == "helical"):
nucLabels = nucGrvLabel
else:
nucLabels = nucMtyLabel
for j in range(len(nucLabels)):
g = nucLabels[j]
INT[rkey+nkey]['basa'][g][m] += SASA[nkey]['sasa'][j+1] - NUC[nkey]['sasa'][g]
# Calculate the components B^(Ri)_m(Nj) and B^(Ri)_m,g(Nj), the BASA components of residue Ri due to nucleotide Nj
for nkey in NUC:
if(nkey in INT_IDS["nuc_ids"] and NUC[nkey]['basa']['total'] > 0):
if(NUCLEOTIDES[nkey]["secondary_structure"] == "helical"):
nucLabels = nucGrvLabel
else:
nucLabels = nucMtyLabel
S = buildStructure(com, COMPLEX_IDS, ex_regex=[[nkey]], field_keys=["res_id"])
S.setRadiiWithClassifier(classifier)
SASA = sumSASA(S, freesasa.calc(S, parameters=opts), REGEXES, IDS['protein'])
for rkey in SASA:
if(rkey in RES and rkey in INT_IDS["res_ids"] and RES[rkey]['basa']['total'] > 0):
INT[rkey+nkey]['res_basa']['total'] = SASA[rkey]['sasa'][0] - RES[rkey]['sasa']['total']
INT[rkey+nkey]['res_basa']['mc'] = SASA[rkey]['sasa'][1] - RES[rkey]['sasa']['mc']
INT[rkey+nkey]['res_basa']['sc'] = SASA[rkey]['sasa'][2] - RES[rkey]['sasa']['sc']
INT[rkey+nkey]['basa']['total'] += SASA[rkey]['sasa'][0] - RES[rkey]['sasa']['total']
# Calculate B^(Ri)_m,g(Nj)
for i in range(len(nucLabels)):
g = nucLabels[i]
S = buildStructure(com, COMPLEX_IDS, ex_regex=[[REGEXES[nkey][i], nkey]], field_keys=["atom_name", "res_id"])
S.setRadiiWithClassifier(classifier)
SASA = sumSASA(S, freesasa.calc(S, parameters=opts), REGEXES, IDS['protein'])
for rkey in SASA:
if(rkey in RES and RES[rkey]['basa']['total'] > 0 and rkey in INT_IDS["res_ids"]):
for j in range(len(resMtyLabel)):
m = resMtyLabel[j]
INT[rkey+nkey]['basa'][g][m] += SASA[rkey]['sasa'][j+1] - RES[rkey]['sasa'][m]
# Remove indirect interactions (i.e. where one or both have no non-overlapping BASA components
deleteList = []
for key in INT:
if(INT[key]['res_basa']['total'] == None or INT[key]['res_basa']['total'] <= 0 or INT[key]['nuc_basa']['total'] <= 0):
deleteList.append(key)
for key in deleteList:
del INT[key]
BASA = {
'residues': list(RES.values()),
'nucleotides': list(NUC.values()),
'interactions': list(INT.values())
}
roundFloats(BASA,3)
return BASA
def basa(model, COMPONENTS, REGEXES, DATA_PATH, NUCLEOTIDES, IDS, INT_IDS, dssp=None, quiet=True, detailed=False):
if(quiet):
freesasa.setVerbosity(freesasa.nowarnings)
classifier = GeneralClassifier()
classifier.initialize(DATA_PATH, COMPONENTS)
BASA = getComplexBASA(model, classifier, REGEXES, NUCLEOTIDES, IDS, INT_IDS, dssp=dssp, detailed=detailed)
return BASA
#### DEBUGGING CODE ###
#from Bio.PDB import PDBIO
#from Bio.PDB.Structure import Structure
#from Bio.PDB.Model import Model
#from Bio.PDB.Chain import Chain
#from Bio.PDB.Residue import Residue
#from Bio.PDB.Atom import Atom
#from Bio.Data import IUPACData
#def freeSASA2PDB(structure):
#OUT = Structure('out')
#OUT.add(Model(0))
#N = structure.nAtoms()
#for i in range(N):
#resn = structure.residueName(i).strip()
#resi = structure.residueNumber(i).strip()
#chain = structure.chainLabel(i)
#aname = structure.atomName(i).strip()
#coord = structure.coord(i)
#element = assignElement(aname)
#if(len(aname) < 4):
#am = re.search("{}([A-Z0-9'\*]+)?".format(element), aname)
#if(aname[-1] == "'"):
#fname = " {}".format(aname)
#elif(am.group(1)):
#fname = "{:>2s}{:<s}".format(element, am.group(1))
#else:
#fname = "{:>2s} ".format(element)
#else:
#aname = fname
## check if chain there
#if(not (chain in OUT[0])):
#OUT[0].add(Chain(chain))
## check if residue there
#rid = (' ', int(resi), ' ')
#if(not (rid in OUT[0][chain])):
#OUT[0][chain].add(Residue(rid, resn, resi))
## add atom
#OUT[0][chain][rid].add(Atom(aname, coord, 1.0, 1.0, ' ', fname, i, element=element))
## write OUT to file
#io = PDBIO()
##io.set_structure(OUT)
##io.save("freesasa.pdb")
#def assignElement(fullname):
#"""Tries to guess element from atom name if not recognised."""
#name = fullname.strip()
#if name.capitalize() not in IUPACData.atom_weights:
## Inorganic elements have their name shifted left by one position
## (is a convention in PDB, but not part of the standard).
## isdigit() check on last two characters to avoid mis-assignment of
## hydrogens atoms (GLN HE21 for example)
#if fullname[0].isalpha() and not (fullname[2:].isdigit() or fullname[2:] == "''"):
#putative_element = name
#else:
## Hs may have digit in first position
#if name[0].isdigit():
#putative_element = name[1]
#else:
#putative_element = name[0]
#if putative_element.capitalize() in IUPACData.atom_weights:
#element = putative_element
#else:
#element = ""
#return element
#else:
#return name[0]
#### DEBUGGING CODE ####
# Removed Code - calculate direct RES-NUC basa
#for rkey in RES:
#S = buildStructure(com,
#in_regex=[
#[ATM, RES[rkey]['resn'], RES[rkey]['resi'] ,RES[rkey]['chain']],
#[ATM, DNA, RESI, CH]
#]
#)
#S.setRadiiWithClassifier(default_classifier)
#SASA = sumSASA(S, freesasa.calc(S), REGEXES['DSDNA_NUCLEOTIDE_GROUPS'], 3)
#for nkey in SASA:
#if(nkey in NUC):
#INT[rkey+nkey]['nuc_basa'] += (NUC[nkey]['fasa'] - SASA[nkey]['sasa'][0])/2
#INT[rkey+nkey]['nuc_wg_basa'] += (NUC[nkey]['wg_fasa'] - SASA[nkey]['sasa'][1])/2
#INT[rkey+nkey]['nuc_sg_basa'] += (NUC[nkey]['sg_fasa'] - SASA[nkey]['sasa'][2])/2
#INT[rkey+nkey]['nuc_bb_basa'] += (NUC[nkey]['bb_fasa'] -SASA[nkey]['sasa'][3])/2
#INT[rkey+nkey]['basa'] += (NUC[nkey]['fasa'] - SASA[nkey]['sasa'][0])/2
#for nkey in NUC:
#S = buildStructure(com,
#in_regex=[
#[ATM, NUC[nkey]['nucn'], NUC[nkey]['nuci'], NUC[nkey]['chain']],
#[ATM, PRO, RESI, CH]
#]
#)
#S.setRadiiWithClassifier(default_classifier)
#SASA = sumSASA(S, freesasa.calc(S), REGEXES['RESIDUE_GROUPS'], 2)
#for rkey in SASA:
#if(rkey in RES):
#INT[rkey+nkey]['res_basa'] = (RES[rkey]['fasa'] - SASA[rkey]['sasa'][0])/2
#INT[rkey+nkey]['res_mc_basa'] = (RES[rkey]['mc_fasa'] - SASA[rkey]['sasa'][1])/2
#INT[rkey+nkey]['res_sc_basa'] = (RES[rkey]['sc_fasa'] - SASA[rkey]['sasa'][2])/2
#INT[rkey+nkey]['basa'] += (RES[rkey]['fasa'] - SASA[rkey]['sasa'][0])/2