-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompileJSON.py
executable file
·1211 lines (1083 loc) · 57.3 KB
/
compileJSON.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Python Modules
import re
import numpy as np
import math as ma
import os
import json
import datetime
import subprocess
import copy
# Custom modules
from dnaprodb_utils import getHash, log, getID, getInteractionMoiety
from dnaprodb_utils import C
from json import encoder
encoder.FLOAT_REPR = lambda o: format(o, '.3f')
# Get the data path
DATA_PATH = C["DATA_PATH"]
# Get standard SASA values
with open(os.path.join(DATA_PATH,'standard-sasa.json')) as FILE:
STANDARD_SASA = json.load(FILE)
# Get interaction stats
with open(os.path.join(DATA_PATH, 'interaction_stats.json')) as FILE:
INTERACTION_STATS = json.load(FILE)
# Get moiety labels
nucDSMtyLabel = C["NUC_MTY_LABEL_DS"]
nucSSMtyLabel = C["NUC_MTY_LABEL_SS"]
nucMtyLabel = C["NUC_MTY_LABEL"]
resMtyLabel = C["RES_MTY_LABEL"]
resSST = C["RES_SST"]
# Get CV cutoffs
CV_PEAK_CUTOFF = lambda x: 0.00 <= x < C["CV_PEAK_UPPER"]
CV_FLAT_CUTOFF = lambda x: C["CV_PEAK_UPPER"] <= x < C["CV_FLAT_UPPER"]
CV_VALL_CUTOFF = lambda x: C["CV_FLAT_UPPER"] <= x <= 1.00
def addSSHeader(pdbid, HELIX, SHEET):
# Add HELIX/SHEET remarks to PDB header
PDB_LINES = open("{}.pdb".format(pdbid)).readlines()
PDB_OUT = open("{}.pdb".format(pdbid),'w')
for j in range(len(HELIX)):
PDB_OUT.write(HELIX[j]+"\n")
for j in range(len(SHEET)):
PDB_OUT.write(SHEET[j]+"\n")
for j in range(len(PDB_LINES)):
PDB_OUT.write(PDB_LINES[j])
PDB_OUT.close()
def emptyDict(fields1, fields2=None, total1=False, total2=False, ensemble=False, N=1):
data = {}
if(fields2):
for f1 in fields1:
data[f1] = {}
for f2 in fields2:
if(ensemble):
data[f1][f2] = [0]*N
else:
data[f1][f2] = 0
if(total2):
if(ensemble):
data[f1]['total'] = [0]*N
else:
data[f1]['total'] = 0
else:
for f1 in fields1:
if(ensemble):
data[f1] = [0]*N
else:
data[f1] = 0
if(total1):
if(ensemble):
data['total'] = [0]*N
else:
data['total'] = 0
return data
def sumDicts(acc, val, sumTotalKeys=None, ensemble=False):
for key in acc:
if(key not in val):
continue
if(isinstance(acc[key], dict)):
sumDicts(acc[key], val[key], sumTotalKeys=sumTotalKeys, ensemble=ensemble)
else:
if(ensemble):
# Check if val is a list
if(isinstance(val[key], list)):
for i in range(len(acc[key])):
acc[key][i] += val[key][i]
if(sumTotalKeys and (key in sumTotalKeys) and ('total' in acc)):
for i in range(len(acc['total'])):
acc['total'][i] += val[key][i]
# Assume val is a float if not a list
elif(isinstance(acc[key][index], list)):
for i in range(len(acc[key][index])):
acc[key][i] += val[key]
if(sumTotalKeys and (key in sumTotalKeys) and ('total' in acc)):
for i in range(len(acc['total'])):
acc['total'][i] += val[key]
else:
acc[key][index] += val[key]
if(sumTotalKeys and (key in sumTotalKeys) and ('total' in acc)):
acc['total'][index] += val[key]
else:
acc[key] += val[key]
if(sumTotalKeys and (key in sumTotalKeys) and ('total' in acc)):
acc['total'] += val[key]
def _getResiduePosition(residue):
if("CA" in residue):
return residue["CA"].get_coord()
elif("N" in residue and "C" in residue):
return (residue["N"].get_coord() + residue["C"].get_coord())/2
elif("N" in residue and "O" in residue):
return (residue["N"].get_coord() + residue["O"].get_coord())/2
elif("C" in residue):
return residue["C"].get_coord()
else:
raise Exception("Coordinate could not be defined for residue {}!".format(getID(residue=residue)))
def getSSECoordinate(model, sse):
coord = np.zeros(3)
for res_id in sse["residue_ids"]:
ch, num, ins = res_id.split(".")
rid = (' ', int(num), ins)
residue = model[ch][rid]
coord += _getResiduePosition(residue)
return coord/len(sse["residue_ids"])
def getHelicoidalCoordinates(haxis, fixed_P, S, Gx, Gy, Gz, coord):
m, n = haxis.shape
mindist = (haxis[1,0]-coord[0])**2 + (haxis[1,1]-coord[1])**2 + (haxis[1,2]-coord[2])**2
i_min = 0
for i in range(2,m):
d2 = (haxis[i,0]-coord[0])**2 + (haxis[i,1]-coord[1])**2 + (haxis[i,2]-coord[2])**2
if(d2 < mindist):
i_min = i
mindist = d2
# Get coordinates at minimum point
sp = 3
sm = 2
if(i_min-2 < 0):
sm = i_min
if(i_min+3 > len(Gx)):
sp =len(Gx)-i_min
T = np.array([
Gx[i_min-sm:i_min+sp].mean(),
Gy[i_min-sm:i_min+sp].mean(),
Gz[i_min-sm:i_min+sp].mean(),
])
T /= np.linalg.norm(T) # tangent to helical axis at the point i_min
# Check that angle between coord and T is within range (ideally pi/2)
R = coord - haxis[i_min]
h_angle = np.arccos(np.dot(R, T)/np.linalg.norm(R))
if(h_angle < C["HELICOIDAL_ANGLE_CUTOFF_LOWER"] or h_angle > C["HELICOIDAL_ANGLE_CUTOFF_UPPER"]):
# helicoidal coordinates undefined
return None
# Compute helicoidal coordinates
Xp = fixed_P - haxis[i_min]
Xp -= np.dot(Xp,T)*T
Xp /= np.linalg.norm(Xp)
Yp = np.cross(T,Xp)
phi_min = ma.atan2(np.dot(R,Yp), np.dot(R,Xp))
return (round(phi_min,3), round(np.linalg.norm(R),3), round(S[i_min],3))
def getCM(model, rids):
CM = np.array([0,0,0],dtype=float)
M = 0
for res_id in rids:
cid, num, ins = res_id.split('.')
rid = (' ', int(num), ins)
if(rid in model[cid]):
residue = model[cid][rid]
for atom in residue:
M += atom.mass
CM += atom.mass*atom.get_coord()
CM /= M
return CM
def getPrincipalAxis(model, rids, CM):
I = np.zeros((3,3), dtype=float)
dmax = 0
for rid in rids:
cid, num, ins = rid.split('.')
rid = (' ', int(num), ins)
residue = model[cid][rid]
for atom in residue:
coord = atom.get_coord() - CM
mass= atom.mass
I[0,0] += mass*(coord[1]**2 + coord[2]**2)
I[0,1] -= mass*coord[0]*coord[1]
I[0,2] -= mass*coord[0]*coord[2]
I[1,1] += mass*(coord[0]**2 + coord[2]**2)
I[1,2] -= mass*coord[1]*coord[2]
I[2,2] += mass*(coord[0]**2 + coord[1]**2)
dmax = max(dmax, np.linalg.norm(coord))
I[1,0] = I[0,1]
I[2,0] = I[0,2]
I[2,1] = I[1,2]
w, v = np.linalg.eig(I)
return w, v, dmax
def getFixedPoint(model, res_ids, haxis):
CM = getCM(model, res_ids) # fixed point in space, determined by protein CM
m, n = haxis.shape
# Check if CM too close to DNA axis
mindist = (haxis[0,0]-CM[0])**2 + (haxis[0,1]-CM[1])**2 + (haxis[0,2]-CM[2])**2
i_min = 0
for i in range(1,m):
d2 = (haxis[i,0]-CM[0])**2 + (haxis[i,1]-CM[1])**2 + (haxis[i,2]-CM[2])**2
if(d2 < mindist):
mindist = d2
i_min = i
DCM = ma.sqrt(mindist)
if(DCM < 1.0):
# use protein principal axis to define fixed point
w, v, _ = getPrincipalAxis(model, res_ids, CM)
# get eigenvector corresponding to largest eigenvalue
jmin = w.argmin()
vmin = v[:,jmin]
u = haxis[i_min] - CM
u /= np.linalg.norm(u)
dp = np.dot(u,vmin)
if(dp >= 0):
return CM + 20*vmin
else:
return CM - 20*vmin
else:
# otherwise use the center of mass
return CM
def generateHaxis(haxis):
# Generate haxis coordinates
xcoef = np.array(haxis["x_coef"])
ycoef = np.array(haxis["y_coef"])
zcoef = np.array(haxis["z_coef"])
m = int(haxis["axis_length"]*5) # 5 points per angstrom
p = np.array(list(range(xcoef.size)))
# Generate axis coordinates
coords = np.zeros((m, 3))
t = np.linspace(-haxis["axis_length"]/2, haxis["axis_length"]/2, num=m)
for i in range(0, m):
coords[i,0] = np.dot(xcoef, np.power(t[i], p))
coords[i,1] = np.dot(ycoef, np.power(t[i], p))
coords[i,2] = np.dot(zcoef, np.power(t[i], p))
# Compute distance along axis
S = np.zeros(m, dtype=float)
for i in range(1,m):
S[i] = S[i-1] + np.linalg.norm(coords[i]-coords[i-1])
# Compute gradients of axis
dS = np.diff(S)
Gx = np.gradient(coords[1:,0], dS.mean())
Gy = np.gradient(coords[1:,1], dS.mean())
Gz = np.gradient(coords[1:,2], dS.mean())
return {"coords": coords , "S": S, "Gx": Gx, "Gy": Gy, "Gz": Gz, "length": m}
def combineData(array, key, fields, dest_dict, delete=None):
for item in array:
if(delete):
for f in delete:
if(f in item):
del item[f]
item_id = item[key]
if(item_id not in dest_dict):
dest_dict[item_id] = copy.deepcopy(item)
for f in fields:
dest_dict[item_id][f] = []
# Loop over mutable fields
for f in fields:
dest_dict[item_id][f].append(item[f])
def getCVRatios(mi, res_ids, residues, key):
ratios = {
"peak_ratio": 0.0,
"flat_ratio": 0.0,
"valley_ratio": 0.0
}
srf_sesa = 0.0
for rid in res_ids:
if(not residues[rid]["surface"][mi]):
continue
cv = residues[rid][key][mi]
if(cv is None):
continue
sesa = residues[rid]['sesa'][mi]["total"]
srf_sesa += sesa
if(CV_PEAK_CUTOFF(cv)):
ratios["peak_ratio"] += sesa
elif(CV_FLAT_CUTOFF(cv)):
ratios["flat_ratio"] += sesa
elif(CV_VALL_CUTOFF(cv)):
ratios["valley_ratio"] += sesa
ratios["peak_ratio"] /= srf_sesa
ratios["flat_ratio"] /= srf_sesa
ratios["valley_ratio"] /= srf_sesa
return ratios
def getPropensities(mi, res_ids, residueBASA, residueFASA):
propensity = {
'ALA':None, 'CYS':None, 'ASP':None, 'GLU':None,
'PHE':None, 'GLY':None, 'HIS':None, 'ILE':None,
'LYS':None, 'LEU':None, 'MET':None, 'ASN':None,
'PRO':None, 'GLN':None, 'ARG':None, 'SER':None,
'THR':None, 'VAL':None, 'TRP':None, 'TYR':None
}
INT_FASA = {
'ALA':0.0, 'CYS':0.0, 'ASP':0.0, 'GLU':0.0,
'PHE':0.0, 'GLY':0.0, 'HIS':0.0, 'ILE':0.0,
'LYS':0.0, 'LEU':0.0, 'MET':0.0, 'ASN':0.0,
'PRO':0.0, 'GLN':0.0, 'ARG':0.0, 'SER':0.0,
'THR':0.0, 'VAL':0.0, 'TRP':0.0, 'TYR':0.0
}
SRF_FASA = {
'ALA':0.0, 'CYS':0.0, 'ASP':0.0, 'GLU':0.0,
'PHE':0.0, 'GLY':0.0, 'HIS':0.0, 'ILE':0.0,
'LYS':0.0, 'LEU':0.0, 'MET':0.0, 'ASN':0.0,
'PRO':0.0, 'GLN':0.0, 'ARG':0.0, 'SER':0.0,
'THR':0.0, 'VAL':0.0, 'TRP':0.0, 'TYR':0.0
}
int_fasa = 0.0
srf_fasa = 0.0
for rid in res_ids:
resn = residueFASA[rid]['name']
if(resn not in INT_FASA):
continue
if(not residueFASA[rid]["surface"][mi]):
continue
sc_fasa = residueFASA[rid]['fasa'][mi]['sc']
if(rid in residueBASA):
sc_basa = residueBASA[rid]['basa_sum']['sc']
else:
sc_basa = 0.0
if(sc_basa > 0.0):
INT_FASA[resn] += sc_fasa
int_fasa += sc_fasa
else:
SRF_FASA[resn] += sc_fasa
srf_fasa += sc_fasa
if(srf_fasa == 0 or int_fasa == 0):
# all or no residues interact with DNA - propensities are not defined
return propensity
for key in propensity:
if(INT_FASA[key] + SRF_FASA[key] == 0.0):
# this residue doesn't appear in the interface or surface
continue
else:
propensity[key] = round(np.log((1+INT_FASA[key]/int_fasa)/(1+SRF_FASA[key]/srf_fasa)),4)
return propensity
def _removeItem(mi, DATA, keys):
if(len(keys) == 0):
DATA.pop(mi)
elif(isinstance(DATA, list)):
key = keys.pop(0)
for D in DATA:
_removeItem(mi, D[key], keys)
else:
_removeItem(mi, DATA[keys.pop(0)], keys)
def deleteModelData(mi, DATA, fields):
for field in fields:
keys = field.split('.')
_removeItem(mi, DATA[keys.pop(0)], keys)
def comp(pdbid, N, assembly, PRO_DATA, DSSP, DNA_DATA, INT_DATA, REGEXES, NUCLEOTIDES, COMPONENTS, META_DATA,
mmcif_dict=None,
ADD_MMCIF=False,
REMOVE_HEADER=True
):
#----------------------------------Template Dictionaries---------------------------------------#
JSON = {
"structure_id": pdbid,
"num_models": N,
"protein": {
"chains": {},
"residues": {},
"num_chains": None,
"num_residues": None,
"models": []
},
"dna": {
"nucleotides": {},
"chains": None,
"num_chains": None,
"num_nucleotides": None,
"models": []
},
"interfaces": {
"models": []
},
"meta_data": {}
}
interface_template = {
"dna_entity_id": None,
"pro_entity_id": None,
"protein_chains": set(),
"nucleotide-residue_interactions": {},
"nucleotide-sse_interactions": {},
"interface_features": {},
"nucleotide_data": {},
"residue_data": {},
"sse_data": {}
}
interface_features_template = {
"basa": emptyDict(nucMtyLabel, fields2=resMtyLabel, total1=True),
"hbond_sum": emptyDict(nucMtyLabel, fields2=resMtyLabel, total1=True),
"vdw_sum": emptyDict(nucMtyLabel, fields2=resMtyLabel, total1=True),
"secondary_structure_composition": None,
"residue_propensities": {},
"protein_surface_geometry": {
"cv_fine": None,
"cv_coarse": None
},
"mean_hydrophobicity_score": 0.0,
"psuedo-stack_interaction_ratio": None,
"psuedo-pair_interaction_ratio": None,
"protein_chain_id": None,
"interaction_count": 0,
"weak_interaction_count": 0,
"stack_count": 0,
"pair_count": 0,
"weight_sum": 0.0,
"residue_ids": set(),
"segment_ids": set(),
"interaction_moiety_summary": emptyDict(nucMtyLabel, fields2=resSST)
}
interface_features_template["basa"]["secondary_structure"] = emptyDict(nucMtyLabel, fields2=resSST)
interface_features_template["hbond_sum"]["secondary_structure"] = emptyDict(nucMtyLabel, fields2=resSST)
interface_features_template["vdw_sum"]["secondary_structure"] = emptyDict(nucMtyLabel, fields2=resSST)
interaction_template = {
"basa": None,
"nuc_basa": None,
"nuc_chain": None,
"nuc_id": None,
"nuc_name": None,
"nuc_number": None,
"res_basa": None,
"res_chain": None,
"res_id": None,
"res_name": None,
"res_number": None,
"res_secondary_structure": None,
"nuc_secondary_structure": None,
"geometry": 'none',
"hbonds": [],
"vdw_interactions": [],
"hbond_sum": None,
"vdw_sum": None,
"min_distance": None,
"mean_nn_distance": None,
"weak_interaction": False
}
sse_interaction_template = {
"basa": None,
"nuc_basa": None,
"nuc_chain": None,
"nuc_id": None,
"nuc_name": None,
"nuc_number": None,
"sse_basa": None,
"sse_chain": None,
"sse_id": None,
"hbond_sum": None,
"vdw_sum": None,
}
residue_sum_template = {
"res_id": None,
"basa_sum": emptyDict(resMtyLabel, total1=True),
"hbond_sum": emptyDict(nucMtyLabel, fields2=resMtyLabel, total1=True),
"vdw_interaction_sum": emptyDict(nucMtyLabel, fields2=resMtyLabel, total1=True),
"nucleotide_interaction_count": 0,
"interacts_with": set(),
"interacts_by": set()
}
nucleotide_sum_template = {
"nuc_id": None,
"basa_sum": None,
"hbond_sum": None,
"vdw_interaction_sum": None,
"residue_interaction_count": 0,
"interacts_with": set(),
"interacts_by": set()
}
#----------------------------------Template Dictionaries---------------------------------------#
### Consolidate immutable data from protein data and append mutables ###
chain_mutables = ["secondary_structure", "continuous", "interacts_with_dna"]
residue_mutables = ["secondary_structure", "sap_score", "cv_fine", "cv_coarse", "sesa", "surface"]
pro_delete = ["chains", "residues"]
for model in PRO_DATA:
# Add chain data
combineData(model["chains"], "id", chain_mutables, JSON["protein"]["chains"])
# Add residue data
combineData(model["residues"], "id", residue_mutables, JSON["protein"]["residues"])
# Delete certain fields from model
for key in pro_delete:
del model[key]
JSON["protein"]["models"].append(model)
### Add nmer-residue lookup and residue-sse lookup info ###
res_sse_lookup = [] # a list of dicts, one for each model, that maps resid to parent SSE
pro_entity_lookup = [] # a list of dicts, one for each model, that maps resid to parent entity
res_segment_lookup = [] # a list of dicts, one for each model, that maps resid to parent segment
pro_entity_map = [] # a list of dicts, one for each model, that maps entity ID to entity
for model in JSON["protein"]["models"]:
# map resid to parent sse
sse_lookup = {}
res_lookup = {}
eid_lookup = {}
seg_lookup = {}
for sse in model["secondary_structure_elements"]:
for res_id in sse["residue_ids"]:
sse_lookup[res_id] = sse
for entity in model["entities"]:
eid = entity["id"]
for res_id in entity["residue_ids"]:
res_lookup[res_id] = eid
eid_lookup[eid] = entity
for seg in model["segments"]:
for res_id in seg["residue_ids"]:
seg_lookup[res_id] = seg["id"]
res_sse_lookup.append(sse_lookup)
pro_entity_lookup.append(res_lookup)
pro_entity_map.append(eid_lookup)
res_segment_lookup.append(seg_lookup)
JSON["protein"]["num_chains"] = len(JSON["protein"]["chains"])
JSON["protein"]["num_residues"] = len(JSON["protein"]["residues"])
### Consolidate immutable data from dna data and append mutables ###
JSON["dna"]["chains"] = DNA_DATA[0]["chains"]
JSON["dna"]["num_nucleotides"] = DNA_DATA[0]["num_nucleotides"]
JSON["dna"]["num_chains"] = DNA_DATA[0]["num_chains"]
nucleotide_mutables = ["glycosidic_conformation", "origin", "secondary_structure", "graph_coordinates"]
dna_delete = ["num_nucleotides", "num_chains", "chains", "nucleotides"]
for model in DNA_DATA:
# Add nucleotide data
combineData(model["nucleotides"], "id", nucleotide_mutables, JSON["dna"]["nucleotides"], delete=["groove_atoms"])
# Delete certain fields from model
for key in dna_delete:
del model[key]
JSON["dna"]["models"].append(model)
### Add entity-nucleotide lookup info ###
dna_entity_lookup = [] # a list of dicts, one for each model which maps nucleotide id to parent entity id
dna_entity_map = [] # a list of dicts, one for each model which maps entity id to entity
for model in JSON["dna"]["models"]:
nuc_lookup = {}
eid_lookup = {}
for entity in model["entities"]:
eid = entity["id"]
eid_lookup[eid] = entity
for n in entity["nucleotides"]:
nuc_lookup[n] = eid
dna_entity_lookup.append(nuc_lookup)
dna_entity_map.append(eid_lookup)
### Make nucleotide map ###
#nucleotideMap = {}
#for nuc in JSON["dna"]["nucleotides"].values():
# nucleotideMap[nuc["id"]] = nuc
### Add nucleotide and residue FASA values from INT_DATA ###
for mi in range(N):
model = INT_DATA[mi]
for res in model["basa"]["residues"]:
rid = res["id"]
fasa = res["fasa"]
if(JSON["protein"]["residues"][rid]["fasa"] is None):
JSON["protein"]["residues"][rid]["fasa"] = []
JSON["protein"]["residues"][rid]["fasa"].append(fasa)
for nuc in model["basa"]["nucleotides"]:
nid = nuc["id"]
fasa = nuc["fasa"]
if(JSON["dna"]["nucleotides"][nid]["fasa"] is None):
JSON["dna"]["nucleotides"][nid]["fasa"] = []
JSON["dna"]["nucleotides"][nid]["fasa"].append(fasa)
DELETE_MODELS = []
### Add nucleotide-residue interactions ###
for mi in range(N):
model = INT_DATA[mi]
interfaces = {} # keyed by entity_id
### Add interactions, starting from interaction list ###
for nr in model["nucleotide-residue_interactions"]:
# Check if in valid DNA entity
if(not (nr["nuc_id"] in dna_entity_lookup[mi])):
continue
if(not (nr["res_id"] in pro_entity_lookup[mi])):
continue
# Check if this is a surface residue
if(not JSON["protein"]["residues"][nr["res_id"]]["surface"][mi]):
continue
res_chain = nr["res_id"][0]
nr_id = getHash(nr["nuc_id"], nr["res_id"])
int_id = getHash(pro_entity_lookup[mi][nr["res_id"]], dna_entity_lookup[mi][nr["nuc_id"]])
if(int_id not in interfaces):
# Add a new interface
interfaces[int_id] = copy.deepcopy(interface_template)
interfaces[int_id]["dna_entity_id"] = dna_entity_lookup[mi][nr["nuc_id"]]
interfaces[int_id]["pro_entity_id"] = pro_entity_lookup[mi][nr["res_id"]]
interfaces[int_id]["protein_chains"].add(res_chain)
# Add interaction to interface
interfaces[int_id]["nucleotide-residue_interactions"][nr_id] = copy.deepcopy(interaction_template)
interfaces[int_id]["nucleotide-residue_interactions"][nr_id].update(nr)
# Add BASA information
for nr in model["basa"]["interactions"]:
if(not (nr["nuc_id"] in dna_entity_lookup[mi])):
continue
if(not (nr["res_id"] in pro_entity_lookup[mi])):
continue
nr_id = getHash(nr["nuc_id"], nr["res_id"])
int_id = getHash(pro_entity_lookup[mi][nr["res_id"]], dna_entity_lookup[mi][nr["nuc_id"]])
if(int_id in interfaces):
if(nr_id in interfaces[int_id]["nucleotide-residue_interactions"]):
interfaces[int_id]["nucleotide-residue_interactions"][nr_id].update(nr)
# Add hydrogen bonds
for hb in model["hbond"]:
# check if in valid DNA entity
if(not (hb["nuc_id"] in dna_entity_lookup[mi])):
continue
if(not (hb["res_id"] in pro_entity_lookup[mi])):
continue
if("distance_WA" not in hb.keys()):
distance_WA = "NA"
water_id = "NA"
else:
distance_WA = hb["distance_WA"]
water_id = hb["water_id"]
nr_id = getHash(hb["nuc_id"], hb["res_id"])
int_id = getHash(pro_entity_lookup[mi][hb["res_id"]], dna_entity_lookup[mi][hb["nuc_id"]])
# Add hbond to interaction
if(int_id in interfaces):
if(nr_id in interfaces[int_id]["nucleotide-residue_interactions"]):
interfaces[int_id]["nucleotide-residue_interactions"][nr_id]["hbonds"].append(
{
"res_atom": hb["res_atom"],
"distance": hb["distance"],
"nuc_atom": hb["nuc_atom"],
"nuc_moiety": hb["nuc_moiety"],
"res_moiety": hb["res_moiety"],
"distance_WA": distance_WA,
"water_id": water_id
}
)
# Add vdw interactions
for vdw in model["vdw"]:
# check if in valid DNA entity
if(not (vdw["nuc_id"] in dna_entity_lookup[mi])):
continue
if(not (vdw["res_id"] in pro_entity_lookup[mi])):
continue
nr_id = getHash(vdw["nuc_id"], vdw["res_id"])
int_id = getHash(pro_entity_lookup[mi][vdw["res_id"]], dna_entity_lookup[mi][vdw["nuc_id"]])
# Add vdw to interaction
if(int_id in interfaces):
if(nr_id in interfaces[int_id]["nucleotide-residue_interactions"]):
interfaces[int_id]["nucleotide-residue_interactions"][nr_id]["vdw_interactions"].append(
{
"res_atom": vdw["res_atom"],
"distance": vdw["distance"],
"nuc_atom": vdw["nuc_atom"],
"nuc_moiety": vdw["nuc_moiety"],
"res_moiety": vdw["res_moiety"]
}
)
# Add geometries
for geo in model["geometry"]:
# check if in valid DNA entity
if(not (geo["nuc_id"] in dna_entity_lookup[mi])):
continue
if(not (geo["res_id"] in pro_entity_lookup[mi])):
continue
nr_id = getHash(geo["nuc_id"], geo["res_id"])
int_id = getHash(pro_entity_lookup[mi][geo["res_id"]], dna_entity_lookup[mi][geo["nuc_id"]])
# Add geometry to interaction
if(int_id in interfaces):
if(nr_id in interfaces[int_id]["nucleotide-residue_interactions"]):
interfaces[int_id]["nucleotide-residue_interactions"][nr_id]["geometry"] = geo["geometry"]
### Compile interface statistics ###
for int_id in interfaces:
# Add interface features dicts
for chain in interfaces[int_id]["protein_chains"]:
interfaces[int_id]["interface_features"][chain] = copy.deepcopy(interface_features_template)
interfaces[int_id]["interface_features"][chain]["protein_chain_id"] = chain
# Compile interaction statistics over each interface
sse_nuc_count = {}
for nr_id in interfaces[int_id]["nucleotide-residue_interactions"]:
nr = interfaces[int_id]["nucleotide-residue_interactions"][nr_id]
nuc_id = nr["nuc_id"]
res_id = nr["res_id"]
parent_sse_id = res_sse_lookup[mi][res_id]["id"]
segment_id = res_segment_lookup[mi][res_id]
res_chain = res_id[0]
interfaces[int_id]["interface_features"][res_chain]["residue_ids"].add(res_id)
interfaces[int_id]["interface_features"][res_chain]["segment_ids"].add(segment_id)
nuc_ss = JSON["dna"]["nucleotides"][nuc_id]["secondary_structure"][mi]
res_ss = JSON["protein"]["residues"][res_id]["secondary_structure"][mi]
if(nuc_ss == "helical"):
nucMty = nucDSMtyLabel
else:
nucMty = nucSSMtyLabel
nr["hbond_sum"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
nr["vdw_sum"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
# Add Secondary Structure
nr["res_secondary_structure"] = res_ss
nr["nuc_secondary_structure"] = nuc_ss
# Add empty basa basa dictionaries if needed
if(nr["basa"] is None):
nr["basa"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
nr["res_basa"] = emptyDict(resMtyLabel, total1=True)
nr["nuc_basa"] = emptyDict(nucMty, total1=True)
# Sum hydrogen bonds
for hb in nr["hbonds"]:
nm = hb["nuc_moiety"]
rm = hb["res_moiety"]
if(rm and nm):
nr["hbond_sum"][nm][rm] += 1
nr["hbond_sum"]["total"] += 1
# Sum vdw interactions
for vw in nr["vdw_interactions"]:
nm = vw["nuc_moiety"]
rm = vw["res_moiety"]
if(rm and nm):
nr["vdw_sum"][nm][rm] += 1
nr["vdw_sum"]["total"] += 1
# Classify interaction moieties
nname = nr["nuc_name"]
rname = nr["res_name"]
if(not re.search(REGEXES["PROTEIN"]["STANDARD_RESIDUES"], rname)):
rname = COMPONENTS[rname]['_chem_comp.mon_nstd_parent_comp_id']
if(not re.search(REGEXES["DNA"]["STANDARD_NUCLEOTIDES"], nname)):
nname = COMPONENTS[nname]['_chem_comp.mon_nstd_parent_comp_id']
if(INTERACTION_STATS[nname+rname]["count"] >= 100):
# Classify interaction
int_mty, nuc_int_mty, res_int_mty = getInteractionMoiety(nr, INTERACTION_STATS[nname+rname], ["basa", "hbond_sum", "vdw_sum"])
else:
# Try to classify interactions with fallback stats.
int_mty, nuc_int_mty, res_int_mty = getInteractionMoiety(nr, INTERACTION_STATS["fallback"], ["basa", "hbond_sum", "vdw_sum"])
if(len(int_mty) == 0):
# A weak interaction - flag it, define interaction moiety based on max basa
nr["weak_interaction"] = True
max_basa = 0.0
max_nm = None
max_rm = None
for nm in nr['basa']:
if(nm == "total"):
continue
for rm in nr['basa'][nm]:
if(nr['basa'][nm][rm] > max_basa):
max_basa = nr['basa'][nm][rm]
max_nm = nm
max_rm = rm
int_mty = ["{}.{}".format(max_nm, max_rm)]
nuc_int_mty = [max_nm]
res_int_mty = [max_rm]
nr["moiety_interactions"] = int_mty
nr["nucleotide_interaction_moieties"] = nuc_int_mty
nr["residue_interaction_moieties"] = res_int_mty
# Add to interaction count
interfaces[int_id]["interface_features"][res_chain]["interaction_count"] += 1
if(nr["weak_interaction"]):
interfaces[int_id]["interface_features"][res_chain]["weak_interaction_count"] += 1
# Add to moiety interaction summary
if(not nr["weak_interaction"]):
for m in nr["nucleotide_interaction_moieties"]:
interfaces[int_id]["interface_features"][res_chain]["interaction_moiety_summary"][m][nr["res_secondary_structure"]] += 1
# Sum basa, vdw, hbonds
sumDicts(interfaces[int_id]["interface_features"][res_chain]["basa"], nr["basa"], sumTotalKeys=resMtyLabel)
sumDicts(interfaces[int_id]["interface_features"][res_chain]["hbond_sum"], nr["hbond_sum"])
sumDicts(interfaces[int_id]["interface_features"][res_chain]["vdw_sum"], nr["vdw_sum"])
# Add secondary structure sums
for mn in nucMty:
for mr in resMtyLabel:
interfaces[int_id]["interface_features"][res_chain]["basa"]["secondary_structure"][mn][res_ss] += nr["basa"][mn][mr]
interfaces[int_id]["interface_features"][res_chain]["hbond_sum"]["secondary_structure"][mn][res_ss] += nr["hbond_sum"][mn][mr]
interfaces[int_id]["interface_features"][res_chain]["vdw_sum"]["secondary_structure"][mn][res_ss] += nr["vdw_sum"][mn][mr]
# sum nucleotide properties
if(nuc_id not in interfaces[int_id]["nucleotide_data"]):
# Make new entry
interfaces[int_id]["nucleotide_data"][nuc_id] = copy.deepcopy(nucleotide_sum_template)
interfaces[int_id]["nucleotide_data"][nuc_id]["nuc_id"] = nuc_id
interfaces[int_id]["nucleotide_data"][nuc_id]["basa_sum"] = emptyDict(nucMty, total1=True)
interfaces[int_id]["nucleotide_data"][nuc_id]["basa_sum"]["secondary_structure"] = emptyDict(nucMty, fields2=resSST)
interfaces[int_id]["nucleotide_data"][nuc_id]["hbond_sum"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
interfaces[int_id]["nucleotide_data"][nuc_id]["hbond_sum"]["secondary_structure"] = emptyDict(nucMty, fields2=resSST)
interfaces[int_id]["nucleotide_data"][nuc_id]["vdw_interaction_sum"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
interfaces[int_id]["nucleotide_data"][nuc_id]["vdw_interaction_sum"]["secondary_structure"] = emptyDict(nucMty, fields2=resSST)
# Update various accumulator dictionaries
interfaces[int_id]["nucleotide_data"][nuc_id]["residue_interaction_count"] += 1
sumDicts(interfaces[int_id]["nucleotide_data"][nuc_id]["basa_sum"], nr["nuc_basa"])
sumDicts(interfaces[int_id]["nucleotide_data"][nuc_id]["hbond_sum"], nr["hbond_sum"], sumTotalKeys=resMtyLabel)
sumDicts(interfaces[int_id]["nucleotide_data"][nuc_id]["vdw_interaction_sum"], nr["vdw_sum"], sumTotalKeys=resMtyLabel)
interfaces[int_id]["nucleotide_data"][nuc_id]["interacts_with"].update(res_int_mty)
interfaces[int_id]["nucleotide_data"][nuc_id]["interacts_by"].update(nuc_int_mty)
# Add secondary structure sums
for mn in nucMty:
interfaces[int_id]["nucleotide_data"][nuc_id]["basa_sum"]["secondary_structure"][mn][res_ss] += nr["nuc_basa"][mn]
for mr in resMtyLabel:
interfaces[int_id]["nucleotide_data"][nuc_id]["hbond_sum"]["secondary_structure"][mn][res_ss] += nr["hbond_sum"][mn][mr]
interfaces[int_id]["nucleotide_data"][nuc_id]["vdw_interaction_sum"]["secondary_structure"][mn][res_ss] += nr["hbond_sum"][mn][mr]
# Sum residue properties
if(res_id not in interfaces[int_id]["residue_data"]):
# Make new entry
interfaces[int_id]["residue_data"][res_id] = copy.deepcopy(residue_sum_template)
interfaces[int_id]["residue_data"][res_id]["res_id"] = res_id
interfaces[int_id]["residue_data"][res_id]["interacting_nucleotides"] = set()
# Update various accumulator dictionaries
interfaces[int_id]["residue_data"][res_id]["nucleotide_interaction_count"] += 1
sumDicts(interfaces[int_id]["residue_data"][res_id]["basa_sum"], nr["res_basa"])
sumDicts(interfaces[int_id]["residue_data"][res_id]["hbond_sum"], nr["hbond_sum"], sumTotalKeys=resMtyLabel)
sumDicts(interfaces[int_id]["residue_data"][res_id]["vdw_interaction_sum"], nr["vdw_sum"], sumTotalKeys=resMtyLabel)
interfaces[int_id]["residue_data"][res_id]["interacts_with"].update(nuc_int_mty)
interfaces[int_id]["residue_data"][res_id]["interacts_by"].update(res_int_mty)
interfaces[int_id]["residue_data"][res_id]["interacting_nucleotides"].add(nuc_id)
# Update geometry counts
if(nr["geometry"] == "pseudo_stack"):
interfaces[int_id]["interface_features"][res_chain]["stack_count"] += 1.0
elif(nr["geometry"] == "pseudo_pair"):
interfaces[int_id]["interface_features"][res_chain]["pair_count"] += 1.0
# Check for existing SSE-nucleotide interactions
ns_id = getHash(nuc_id, parent_sse_id)
if(parent_sse_id not in sse_nuc_count):
sse_nuc_count[parent_sse_id] = 0
if(ns_id not in interfaces[int_id]["nucleotide-sse_interactions"]):
# Make new entry
interfaces[int_id]["nucleotide-sse_interactions"][ns_id] = copy.deepcopy(sse_interaction_template)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["sse_id"] = parent_sse_id
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["sse_chain"] = nr["res_chain"]
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nuc_chain"] = nr["nuc_chain"]
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nuc_name"] = nr["nuc_name"]
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nuc_number"] = nr["nuc_number"]
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nuc_id"] = nr["nuc_id"]
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["basa"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["sse_basa"] = emptyDict(resMtyLabel, total1=True)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nuc_basa"] = emptyDict(nucMty, total1=True)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["hbond_sum"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["vdw_sum"] = emptyDict(nucMty, fields2=resMtyLabel, total1=True)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nucleotide_interaction_moieties"] = set()
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["residue_interaction_moieties"] = set()
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["moiety_interactions"] = set()
sumDicts(interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["sse_basa"], nr["res_basa"])
sumDicts(interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nuc_basa"], nr["nuc_basa"])
sumDicts(interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["basa"], nr["basa"])
sumDicts(interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["hbond_sum"], nr["hbond_sum"])
sumDicts(interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["vdw_sum"], nr["vdw_sum"])
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["nucleotide_interaction_moieties"].update(nuc_int_mty)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["residue_interaction_moieties"].update(res_int_mty)
interfaces[int_id]["nucleotide-sse_interactions"][ns_id]["moiety_interactions"].update(int_mty)
sse_nuc_count[parent_sse_id] += 1
# Add interactions to parent strand/chain
parent_dna_entity = dna_entity_map[mi][dna_entity_lookup[mi][nuc_id]]
for s in parent_dna_entity["strands"]:
if(nuc_id in s["ids"]):
s["interacts_with_protein"] = True
break
JSON["protein"]["chains"][res_chain]["interacts_with_dna"][mi] = True
# Compute residue propensities and surface geometries
for chain in interfaces[int_id]["protein_chains"]:
res_ids = JSON["protein"]["chains"][chain]["residue_ids"]
interfaces[int_id]["interface_features"][chain]["residue_propensities"] = getPropensities(mi, res_ids, interfaces[int_id]["residue_data"], JSON["protein"]["residues"])
interfaces[int_id]["interface_features"][chain]["protein_surface_geometry"]["cv_fine"] = getCVRatios(mi, res_ids, JSON["protein"]["residues"], "cv_fine")
interfaces[int_id]["interface_features"][chain]["protein_surface_geometry"]["cv_coarse"] = getCVRatios(mi, res_ids, JSON["protein"]["residues"], "cv_coarse")
# Compile SSE data from residue data
for rid in interfaces[int_id]["residue_data"]:
parent_sse_id = res_sse_lookup[mi][rid]["id"]
if(parent_sse_id not in interfaces[int_id]["sse_data"]):
# Add new entry
interfaces[int_id]["sse_data"][parent_sse_id] = copy.deepcopy(residue_sum_template)
interfaces[int_id]["sse_data"][parent_sse_id]["sse_id"] = parent_sse_id
interfaces[int_id]["sse_data"][parent_sse_id]["nucleotide_interaction_count"] = sse_nuc_count[parent_sse_id]
interfaces[int_id]["sse_data"][parent_sse_id]["interacting_nucleotides"] = set()
# remove unused fields
del interfaces[int_id]["sse_data"][parent_sse_id]["res_id"]
# Sum over all accumulated values
sumDicts(interfaces[int_id]["sse_data"][parent_sse_id]["basa_sum"], interfaces[int_id]["residue_data"][rid]["basa_sum"])
sumDicts(interfaces[int_id]["sse_data"][parent_sse_id]["hbond_sum"], interfaces[int_id]["residue_data"][rid]["hbond_sum"])
sumDicts(interfaces[int_id]["sse_data"][parent_sse_id]["vdw_interaction_sum"], interfaces[int_id]["residue_data"][rid]["vdw_interaction_sum"])
interfaces[int_id]["sse_data"][parent_sse_id]["interacts_with"].update(interfaces[int_id]["residue_data"][rid]["interacts_with"])
interfaces[int_id]["sse_data"][parent_sse_id]["interacts_by"].update(interfaces[int_id]["residue_data"][rid]["interacts_by"])
interfaces[int_id]["sse_data"][parent_sse_id]["interacting_nucleotides"].update(interfaces[int_id]["residue_data"][rid]["interacting_nucleotides"])
# Geometry ratios
for chain in interfaces[int_id]["protein_chains"]:
interfaces[int_id]["interface_features"][chain]["psuedo-stack_interaction_ratio"] = (
interfaces[int_id]["interface_features"][chain]["stack_count"]/
interfaces[int_id]["interface_features"][chain]["interaction_count"]
)
interfaces[int_id]["interface_features"][chain]["psuedo-pair_interaction_ratio"] = (
interfaces[int_id]["interface_features"][chain]["pair_count"]/
interfaces[int_id]["interface_features"][chain]["interaction_count"]
)
### Add helicoidal coordinates to each interface and update interaction moieties ###
for int_id in interfaces:
eid = interfaces[int_id]["dna_entity_id"]
entity = dna_entity_map[mi][eid]
for i in range(len(entity["helical_segments"])):
# Compute helicoidal coordinates for SSE, residues and nucleotides
HELIX = entity["helical_segments"][i]
HAXIS = generateHaxis(HELIX["helical_axis"])
FIXED = getFixedPoint(assembly[mi] , res_ids, HAXIS["coords"])
nucleotide_ids = set(HELIX["ids1"] + HELIX["ids2"])
# Residue coordinates
for res_id in interfaces[int_id]["residue_data"]:
if(len(interfaces[int_id]["residue_data"][res_id]["interacting_nucleotides"] & nucleotide_ids) == 0):
# this residue doesn't interact with helix nucleotides
continue
ch, num, ins = res_id.split('.')
rid = (' ', int(num), ins)
res = assembly[mi][ch][rid]
coord = _getResiduePosition(res)
hc = getHelicoidalCoordinates(HAXIS["coords"], FIXED, HAXIS["S"], HAXIS["Gx"], HAXIS["Gy"], HAXIS["Gz"], coord)
if(hc is None):
# skip residues which are too far away from the helical axis ends - not well defined
continue
interfaces[int_id]["residue_data"][res_id]["helicoidal_coordinates"] = {
"phi": hc[0],
"rho": hc[1],
"s": hc[2]