We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
In the below example, using a training set of 2010:2019 produces the following chart: Note the break in the forecasted mean.
This does not happen when either setting training to 2015:2019 or just using lin. trend model: TSLM(mr ~ trend())
TSLM(mr ~ trend())
Example:
library(fable) library(tsibble) library(dplyr) df <- tibble( date = 2010:2023, mr = c(704, 852, 935, 520, 750, 305, 560, 769, 774, 703, 941, 439, 912, 584) ) df_train <- df |> filter(date %in% 2010:2019) df_test <- df_bl |> filter(year > 2019) mdl <- df_train |> as_tsibble(index = date) |> model(lm = TSLM(log(mr) ~ trend())) bl <- mdl |> augment() |> rename(.mean = .fitted) fc <- mdl |> forecast(h = 4) df_plot <- bind_rows(bl, fc) |> select(date, .mean) df_plot |> autoplot(.vars = .mean)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
In the below example, using a training set of 2010:2019 produces the following chart:
![plot-1](https://private-user-images.githubusercontent.com/94856880/322968650-d8d6f267-3ab1-4714-a36e-9bb6a462ee4c.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkwMTMzODUsIm5iZiI6MTczOTAxMzA4NSwicGF0aCI6Ii85NDg1Njg4MC8zMjI5Njg2NTAtZDhkNmYyNjctM2FiMS00NzE0LWEzNmUtOWJiNmE0NjJlZTRjLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDglMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA4VDExMTEyNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTI1MzZkZWNkOTcxNjliZmJkMmNkZTM4ZGM2N2VmMmEzNWQzOWM4MWE1ZWY0MjBkOGE4OTY3ZTFkMDBiNDE2OGQmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.Jg21lukXmBksHIIVmf8NJUqYHcROe8GjcFVjkw54PHw)
Note the break in the forecasted mean.
This does not happen when either setting training to 2015:2019 or just using lin. trend model:
TSLM(mr ~ trend())
Example:
The text was updated successfully, but these errors were encountered: