@@ -54,7 +54,7 @@ model_info_table <-
54
54
# ' @keywords internal
55
55
# ' @references "How to build a parsnip model"
56
56
# ' \url{https://www.tidymodels.org/learn/develop/models/}
57
- # ' @examples
57
+ # ' @examplesIf !parsnip:::is_cran_check()
58
58
# ' # Access the model data:
59
59
# ' current_code <- get_model_env()
60
60
# ' ls(envir = current_code)
@@ -473,7 +473,6 @@ check_interface_val <- function(x) {
473
473
# ' `"rand_forest"`, etc).
474
474
# ' @param mode A single character string for the model mode (e.g. "regression").
475
475
# ' @param eng A single character string for the model engine.
476
- # ' @param arg A single character string for the model argument name.
477
476
# ' @param has_submodel A single logical for whether the argument
478
477
# ' can make predictions on multiple submodels at once.
479
478
# ' @param func A named character vector that describes how to call
@@ -483,10 +482,6 @@ check_interface_val <- function(x) {
483
482
# ' used to invoke the usual linear regression function. In some
484
483
# ' cases, it is helpful to use `c(fun = "predict")` when using a
485
484
# ' package's `predict` method.
486
- # ' @param fit_obj A list with elements `interface`, `protect`,
487
- # ' `func` and `defaults`. See the package vignette "Making a
488
- # ' `parsnip` model from scratch".
489
- # ' @param pred_obj A list with elements `pre`, `post`, `func`, and `args`.
490
485
# ' @param type A single character value for the type of prediction. Possible
491
486
# ' values are: `class`, `conf_int`, `numeric`, `pred_int`, `prob`, `quantile`,
492
487
# ' and `raw`.
@@ -557,7 +552,7 @@ check_interface_val <- function(x) {
557
552
# '
558
553
# ' @references "How to build a parsnip model"
559
554
# ' \url{https://www.tidymodels.org/learn/develop/models/}
560
- # ' @examples
555
+ # ' @examplesIf !parsnip:::is_cran_check()
561
556
# ' # set_new_model("shallow_learning_model")
562
557
# '
563
558
# ' # Show the information about a model:
0 commit comments