|
| 1 | +library(testthat) |
| 2 | +library(parsnip) |
| 3 | +library(rlang) |
| 4 | +library(tibble) |
| 5 | + |
| 6 | +# ------------------------------------------------------------------------------ |
| 7 | + |
| 8 | +test_that('primary arguments', { |
| 9 | + basic <- svm_rbf(mode = "classification") |
| 10 | + basic_liquidSVM <- translate(basic %>% set_engine("liquidSVM")) |
| 11 | + |
| 12 | + expect_equal( |
| 13 | + object = basic_liquidSVM$method$fit$args, |
| 14 | + expected = list( |
| 15 | + x = expr(missing_arg()), |
| 16 | + y = expr(missing_arg()), |
| 17 | + folds = 1, |
| 18 | + threads = 0 |
| 19 | + ) |
| 20 | + ) |
| 21 | + |
| 22 | + rbf_sigma <- |
| 23 | + svm_rbf(mode = "classification", rbf_sigma = .2) %>% |
| 24 | + set_engine("liquidSVM") |
| 25 | + rbf_sigma_liquidSVM <- translate(rbf_sigma) |
| 26 | + |
| 27 | + expect_equal( |
| 28 | + object = rbf_sigma_liquidSVM$method$fit$args, |
| 29 | + expected = list( |
| 30 | + x = expr(missing_arg()), |
| 31 | + y = expr(missing_arg()), |
| 32 | + gammas = quo(.2), |
| 33 | + folds = 1, |
| 34 | + threads = 0 |
| 35 | + ) |
| 36 | + ) |
| 37 | + |
| 38 | +}) |
| 39 | + |
| 40 | +test_that('engine arguments', { |
| 41 | + |
| 42 | + liquidSVM_scale <- |
| 43 | + svm_rbf() %>% |
| 44 | + set_mode("classification") %>% |
| 45 | + set_engine("liquidSVM", scale = FALSE, predict.prob = TRUE, threads = 2, gpus = 1) |
| 46 | + |
| 47 | + expect_equal( |
| 48 | + object = translate(liquidSVM_scale, "liquidSVM")$method$fit$args, |
| 49 | + expected = list( |
| 50 | + x = expr(missing_arg()), |
| 51 | + y = expr(missing_arg()), |
| 52 | + scale = new_quosure(FALSE, env = empty_env()), |
| 53 | + predict.prob = new_quosure(TRUE, env = empty_env()), |
| 54 | + threads = new_quosure(2, env = empty_env()), |
| 55 | + gpus = new_quosure(1, env = empty_env()), |
| 56 | + folds = 1 |
| 57 | + ) |
| 58 | + ) |
| 59 | + |
| 60 | +}) |
| 61 | + |
| 62 | + |
| 63 | +test_that('updating', { |
| 64 | + |
| 65 | + expr1 <- svm_rbf() %>% set_engine("liquidSVM", scale = TRUE) |
| 66 | + expr1_exp <- svm_rbf(rbf_sigma = .1) %>% set_engine("liquidSVM", scale = TRUE) |
| 67 | + |
| 68 | + expr3 <- svm_rbf(rbf_sigma = .2) %>% set_engine("liquidSVM") |
| 69 | + expr3_exp <- svm_rbf(rbf_sigma = .3) %>% set_engine("liquidSVM") |
| 70 | + |
| 71 | + expect_equal(update(expr1, rbf_sigma = .1), expr1_exp) |
| 72 | + expect_equal(update(expr3, rbf_sigma = .3, fresh = TRUE), expr3_exp) |
| 73 | +}) |
| 74 | + |
| 75 | +test_that('bad input', { |
| 76 | + expect_error(svm_rbf(mode = "reallyunknown")) |
| 77 | + expect_error(translate(svm_rbf() %>% set_engine( NULL))) |
| 78 | +}) |
| 79 | + |
| 80 | +# ------------------------------------------------------------------------------ |
| 81 | +# define model specification for classification and regression |
| 82 | + |
| 83 | +reg_mod <- |
| 84 | + svm_rbf(rbf_sigma = .1, cost = 0.25) %>% |
| 85 | + set_engine("liquidSVM", random_seed = 1234, folds = 1) %>% |
| 86 | + set_mode("regression") |
| 87 | + |
| 88 | +cls_mod <- |
| 89 | + svm_rbf(rbf_sigma = .1, cost = 0.125) %>% |
| 90 | + set_engine("liquidSVM", random_seed = 1234, folds = 1) %>% |
| 91 | + set_mode("classification") |
| 92 | + |
| 93 | +ctrl <- fit_control(verbosity = 0, catch = FALSE) |
| 94 | + |
| 95 | +# ------------------------------------------------------------------------------ |
| 96 | + |
| 97 | +test_that('svm rbf regression', { |
| 98 | + |
| 99 | + skip_if_not_installed("liquidSVM") |
| 100 | + |
| 101 | + expect_error( |
| 102 | + fit_xy( |
| 103 | + reg_mod, |
| 104 | + control = ctrl, |
| 105 | + x = iris[, 2:4], |
| 106 | + y = iris$Sepal.Length |
| 107 | + ), |
| 108 | + regexp = NA |
| 109 | + ) |
| 110 | + |
| 111 | + expect_error( |
| 112 | + fit( |
| 113 | + reg_mod, |
| 114 | + Sepal.Length ~ ., |
| 115 | + data = iris[, -5], |
| 116 | + control = ctrl |
| 117 | + ), |
| 118 | + regexp = NA |
| 119 | + ) |
| 120 | + |
| 121 | +}) |
| 122 | + |
| 123 | + |
| 124 | +test_that('svm rbf regression prediction', { |
| 125 | + |
| 126 | + skip_if_not_installed("liquidSVM") |
| 127 | + |
| 128 | + reg_form <- |
| 129 | + fit( |
| 130 | + object = reg_mod, |
| 131 | + formula = Sepal.Length ~ ., |
| 132 | + data = iris[, -5], |
| 133 | + control = ctrl |
| 134 | + ) |
| 135 | + |
| 136 | + reg_xy_form <- |
| 137 | + fit_xy( |
| 138 | + object = reg_mod, |
| 139 | + x = iris[, 2:4], |
| 140 | + y = iris$Sepal.Length, |
| 141 | + control = ctrl |
| 142 | + ) |
| 143 | + expect_equal(reg_form$spec, reg_xy_form$spec) |
| 144 | + |
| 145 | + liquidSVM_form <- |
| 146 | + liquidSVM::svm( |
| 147 | + x = Sepal.Length ~ ., |
| 148 | + y = iris[, -5], |
| 149 | + gammas = .1, |
| 150 | + lambdas = 0.25, |
| 151 | + folds = 1, |
| 152 | + random_seed = 1234 |
| 153 | + ) |
| 154 | + |
| 155 | + liquidSVM_xy_form <- |
| 156 | + liquidSVM::svm( |
| 157 | + x = iris[, 2:4], |
| 158 | + y = iris$Sepal.Length, |
| 159 | + gammas = .1, |
| 160 | + lambdas = 0.25, |
| 161 | + folds = 1, |
| 162 | + random_seed = 1234 |
| 163 | + ) |
| 164 | + |
| 165 | + # check coeffs for liquidSVM formula and liquidSVM xy fit interfaces |
| 166 | + expect_equal(liquidSVM::getSolution(liquidSVM_form)[c("coeff", "sv")], |
| 167 | + liquidSVM::getSolution(liquidSVM_xy_form)[c("coeff", "sv")]) |
| 168 | + |
| 169 | + # check predictions for liquidSVM formula and liquidSVM xy interfaces |
| 170 | + liquidSVM_form_preds <- predict(liquidSVM_form, iris[1:3, 2:4]) |
| 171 | + liquidSVM_form_xy_preds <- predict(liquidSVM_xy_form, iris[1:3, 2:4]) |
| 172 | + expect_equal(liquidSVM_form_preds, liquidSVM_form_xy_preds) |
| 173 | + |
| 174 | + # check predictions for parsnip formula and liquidSVM formula interfaces |
| 175 | + liquidSVM_pred <- |
| 176 | + structure( |
| 177 | + list(.pred = liquidSVM_form_preds), |
| 178 | + row.names = c(NA, -3L), class = c("tbl_df", "tbl", "data.frame")) |
| 179 | + |
| 180 | + parsnip_pred <- predict(reg_form, iris[1:3, 2:4]) |
| 181 | + expect_equal(as.data.frame(liquidSVM_pred), as.data.frame(parsnip_pred)) |
| 182 | + |
| 183 | + # check that coeffs are equal for formula methods called via parsnip and liquidSVM |
| 184 | + expect_equal(liquidSVM::getSolution(reg_form$fit)[c("coeff", "sv")], |
| 185 | + liquidSVM::getSolution(liquidSVM_form)[c("coeff", "sv")]) |
| 186 | + |
| 187 | + # check coeffs are equivalent for parsnip fit_xy and parsnip formula methods |
| 188 | + expect_equal(liquidSVM::getSolution(reg_form$fit)[c("coeff", "sv")], |
| 189 | + liquidSVM::getSolution(reg_xy_form$fit)[c("coeff", "sv")]) |
| 190 | + |
| 191 | + # check predictions are equal for parsnip xy and liquidSVM xy methods |
| 192 | + parsnip_xy_pred <- predict(reg_xy_form, iris[1:3, -c(1, 5)]) |
| 193 | + expect_equal(as.data.frame(liquidSVM_pred), as.data.frame(parsnip_xy_pred)) |
| 194 | +}) |
| 195 | + |
0 commit comments