-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlog_helper.py
executable file
·205 lines (166 loc) · 6.42 KB
/
log_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import atexit
import time
import itertools
from collections import OrderedDict
import dllogger
from dllogger import Backend, JSONStreamBackend
from tensorboardX import SummaryWriter
import torch
import utils
class AverageMeter():
def __init__(self):
self.reset()
def reset(self):
self.updated = False
self.avg = 0
self.sum = 0
self.count = 0
def update(self, value):
self.updated = True
if isinstance(value, (tuple, list)):
val = value[0]
n = value[1]
else:
val = value
n = 1
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
@property
def value(self):
return self.avg
class PerformanceMeter():
def __init__(self):
self.reset()
def reset(self):
self.updated = False
torch.cuda.synchronize()
self.start = time.time()
self.n = 0
def update(self, val=1):
self.updated = True
self.n += val
@property
def value(self):
return self.n / self.elapsed_time
@property
def elapsed_time(self):
torch.cuda.synchronize()
return time.time() - self.start
METRIC = {'average': AverageMeter, 'performance': PerformanceMeter}
class AggregatorBackend(Backend):
def __init__(self, verbosity, agg_dict):
super().__init__(verbosity=verbosity)
agg_dict = OrderedDict({k: v if isinstance(v, (tuple, list)) else (v,) for k, v in agg_dict.items()})
self.metrics = OrderedDict({k: [METRIC[x]() for x in v] for k, v in agg_dict.items()})
self.metrics.flushed = True
self.step = 0
self.epoch = 0
torch.cuda.synchronize()
self.start_time = time.time()
@property
def log_level(self):
return self._log_level
def metadata(self, timestamp, elapsedtime, metric, metadata):
pass
def _reset_perf_meter(self, name):
for agg in self.metrics[name]:
if isinstance(agg, PerformanceMeter):
agg.reset()
def reset_perf_meters(self):
for name in self.metrics.keys():
self._reset_perf_meter(name)
def log(self, timestamp, elapsedtime, step, data):
self.step = step
if 'epoch' in data.keys():
self.epoch = data['epoch']
for k, v in data.items():
if k not in self.metrics.keys():
continue
self.metrics.flushed = False
for ag in self.metrics[k]:
ag.update(v)
def flush(self):
if self.metrics.flushed:
return
result_string = 'Transformer | epoch {} | step {} |'.format(self.epoch, self.step)
for name, aggregators in self.metrics.items():
for agg in aggregators:
if not agg.updated:
continue
if isinstance(agg, AverageMeter):
_name = 'avg ' + name
elif isinstance(agg, PerformanceMeter):
_name = name + '/s'
result_string += _name + ' {:.3f} |'.format(agg.value)
agg.reset()
torch.cuda.synchronize()
result_string += 'walltime {:.3f} |'.format(time.time() - self.start_time)
self.metrics.flushed = True
print(result_string)
class TensorBoardBackend(Backend):
def __init__(self, verbosity, log_dir):
super().__init__(verbosity=verbosity)
self.summary_writer = SummaryWriter(log_dir=os.path.join(log_dir, 'TB_summary'),
flush_secs=120,
max_queue=200
)
atexit.register(self.summary_writer.close)
@property
def log_level(self):
return self._log_level
def metadata(self, timestamp, elapsedtime, metric, metadata):
pass
def log(self, timestamp, elapsedtime, step, data):
if not isinstance(step, int):
return
for k, v in data.items():
self.summary_writer.add_scalar(k, v, step)
def flush(self):
pass
def setup_logger(args):
aggregator_dict = OrderedDict([
('loss', 'average'),
('weighted_loss', 'average'),
('tokens', ('average', 'performance')),
('updates', 'performance'),
('gnorm', 'average')
])
os.makedirs(args.output_dir, exist_ok=True)
stat_file = "logger.json"
log_path = os.path.join(args.output_dir, stat_file)
if os.path.exists(log_path):
for i in itertools.count():
s_fname = stat_file.split('.')
fname = '.'.join(s_fname[:-1]) + f'_{i}.' + s_fname[-1] if len(s_fname) > 1 else stat_file + f'.{i}'
log_path = os.path.join(args.output_dir, fname)
if not os.path.exists(log_path):
break
if utils.is_main_process():
dllogger.init(backends=[JSONStreamBackend(verbosity=1, filename=log_path),
AggregatorBackend(verbosity=0, agg_dict=aggregator_dict),
TensorBoardBackend(verbosity=1, log_dir=args.output_dir)])
else:
dllogger.init(backends=[])
for k, v in vars(args).items():
dllogger.log(step='PARAMETER', data={k: v}, verbosity=0)
container_setup_info = get_framework_env_vars()
dllogger.log(step='PARAMETER', data=container_setup_info, verbosity=0)
def get_framework_env_vars():
return {
'NVIDIA_PYTORCH_VERSION': os.environ.get('NVIDIA_PYTORCH_VERSION'),
'PYTORCH_VERSION': os.environ.get('PYTORCH_VERSION'),
'CUBLAS_VERSION': os.environ.get('CUBLAS_VERSION'),
'NCCL_VERSION': os.environ.get('NCCL_VERSION'),
'CUDA_DRIVER_VERSION': os.environ.get('CUDA_DRIVER_VERSION'),
'CUDNN_VERSION': os.environ.get('CUDNN_VERSION'),
'CUDA_VERSION': os.environ.get('CUDA_VERSION'),
'NVIDIA_PIPELINE_ID': os.environ.get('NVIDIA_PIPELINE_ID'),
'NVIDIA_BUILD_ID': os.environ.get('NVIDIA_BUILD_ID'),
'NVIDIA_TF32_OVERRIDE': os.environ.get('NVIDIA_TF32_OVERRIDE'),
}
def reset_perf_meters():
for backend in dllogger.GLOBAL_LOGGER.backends:
if isinstance(backend, AggregatorBackend):
backend.reset_perf_meters()