-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloop.py
56 lines (48 loc) · 2.18 KB
/
loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import matplotlib.pyplot as plt
class Loop:
def __init__(self, model, train_loader, test_loader, loss_fn, optimizer, device):
self.model = model
self.train_loader = train_loader
self.test_loader = test_loader
self.loss_fn = loss_fn
self.optimizer = optimizer
self.device = device
self.test_acc = []
def train(self, epoch):
self.model.train()
for batch_idx, (data, target) in enumerate(self.train_loader):
data, target = data.to(self.device), target.to(self.device)
self.optimizer.zero_grad()
output = self.model(data)
loss = self.loss_fn(output, target)
loss.backward()
self.optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(self.train_loader.dataset),
100. * batch_idx / len(self.train_loader), loss.item()))
def test(self, epoch):
with torch.no_grad():
self.model.eval()
test_loss = 0
correct = 0
for data, target in self.test_loader:
data, target = data.to(self.device), target.to(self.device)
output = self.model(data)
# sum up batch loss
test_loss += self.loss_fn(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(self.test_loader.dataset)
print('Test Epoch:{} Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(epoch, test_loss, correct, len(self.test_loader.dataset),
100. * correct / len(self.test_loader.dataset)))
self.test_acc.append(100. * correct / len(self.test_loader.dataset))
def show(self):
x = range(1, self.test_acc.__len__() + 1)
plt.figure()
plt.title('Test Acc')
plt.plot(x, self.test_acc)
plt.savefig("./result.jpg")