Skip to content

Latest commit

 

History

History
192 lines (123 loc) · 6.1 KB

MackExample.rst

File metadata and controls

192 lines (123 loc) · 6.1 KB

Mack chainladder model

We will explore the properties and methods underlying the MackChainladder class.

As usual, we we import the chainladder package as well as the popular pandas package. For plotting purposes, we will also be using Jupyter's %matplotlib inline magic function.

Load package and data

import chainladder as cl
import pandas as pd
%matplotlib inline

We will be exploring the MackChainladder class on the GenIns dataset included in the chainladder package. Let's load the triangle and look at it.

GI = cl.load_dataset('GenIns')
GI_tri = cl.Triangle(GI)
GI_tri.data
dev 1 2 3 4 5 6 7 8 9 10
origin                    
1 357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463
2 352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085 NaN
3 290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315 NaN NaN
4 310608 1418858 2195047 3757447 4029929 4381982 4588268 NaN NaN NaN
5 443160 1136350 2128333 2897821 3402672 3873311 NaN NaN NaN NaN
6 396132 1333217 2180715 2985752 3691712 NaN NaN NaN NaN NaN
7 440832 1288463 2419861 3483130 NaN NaN NaN NaN NaN NaN
8 359480 1421128 2864498 NaN NaN NaN NaN NaN NaN NaN
9 376686 1363294 NaN NaN NaN NaN NaN NaN NaN NaN
10 344014 NaN NaN NaN NaN NaN NaN NaN NaN NaN

Create the MackChainladder model

To create a MackChainladder model, we can specify up to four elements. A triangle is the only non-optional element that needs to be specified to create the model. Another parameter of interest we will be using here is the alpha parameter.

Thomas Mack establishes a parameter alpha as a way of generalizing the chainladder formula into a weighted least squares regression that works for:
alpha = 0 : straight average of link-ratios
alpha = 1 : volume weighted chainladder
alpha = 2 : ordinary least squares regression with intercept 0

The default parameter is alpha = 1

For all other parameters, please refer to the documentation of the MackChainladder class.

Load the Data

GI_mack = cl.MackChainladder(tri = GI_tri)

There are a variety of attributes and methods available in the MackChainladder class. Most of these borrow notation similar to that of the `R chainladder <https://github.com/mages/ChainLadder>`__ package, but there are a few differences. A complete list of attributes and methods are shown below. Details on these are contained in the documentation of this module.

** Available attributes and methods **

[item for item in dir(GI_mack) if item[:1]!='_']
['Fse',
 'age_to_age',
 'alpha',
 'chainladder',
 'f',
 'fse',
 'full_triangle',
 'is_exponential_tail_appropriate',
 'mack_se',
 'parameter_risk',
 'plot',
 'process_risk',
 'sigma',
 'summary',
 'total_mack_se',
 'total_parameter_risk',
 'total_process_risk',
 'triangle',
 'weights']

Mack model summary

A useful method is the summary() method. This will produce, by origin period, the IBNR estimate based off of the MackChainladder model as well as its corresponding standard error. This is useful in gaining deeper insight into the uncertainty in the model.

GI_mack.summary().round(3)
origin Latest Dev to Date Ultimate IBNR Mack S.E. CV(IBNR)
1 3901463 1.000 3901463.000 0.000 0.000 NaN
2 5339085 0.983 5433718.815 94633.815 71835.187 0.759
3 4909315 0.913 5378826.290 469511.290 119473.736 0.254
4 4588268 0.866 5297905.821 709637.821 131572.833 0.185
5 3873311 0.797 4858199.639 984888.639 260530.015 0.265
6 3691712 0.722 5111171.458 1419459.458 410406.890 0.289
7 3483130 0.615 5660770.620 2177640.620 557795.542 0.256
8 2864498 0.422 6784799.012 3920301.012 874882.218 0.223
9 1363294 0.242 5642266.263 4278972.263 970959.785 0.227
10 344014 0.069 4969824.694 4625810.694 1362981.070 0.295

Plotting the Mack model

In many cases, we prefer a visual representation of the model, and can represent much of the same data contained in the summary() method by calling the plot() method.

The plot() method can be passed a list of desired plots or it can be generically called to plot all available plots.

Individual plot

GI_mack.plot(plots=['summary'])
<matplotlib.figure.Figure at 0x233ac232390>

output_11_1.png

Plotting default (all plots)

GI_mack.plot()
<matplotlib.figure.Figure at 0x233acb89cf8>

output_13_1.png