Skip to content

Commit 6c1bc46

Browse files
committed
Change name from OMGP to AugmentedGaussianProcesses
1 parent fb002fa commit 6c1bc46

30 files changed

+183
-172
lines changed

.travis.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -11,5 +11,5 @@ notifications:
1111
after_success:
1212
# push coverage results to Coveralls
1313
- export DOCUMENTER_DEBUG=true
14-
- julia -e 'using Pkg; cd(Pkg.dir("OMGP")); Pkg.add("Coverage"); using Coverage; Coveralls.submit(Coveralls.process_folder()); Codecov.submit(Codecov.process_folder())'
14+
- julia -e 'using Pkg; cd(Pkg.dir("AugmentedGaussianProcesses")); Pkg.add("Coverage"); using Coverage; Coveralls.submit(Coveralls.process_folder()); Codecov.submit(Codecov.process_folder())'
1515
- julia -e 'using Pkg; ps=Pkg.PackageSpec(name="Documenter", version="0.19"); Pkg.add(ps); Pkg.pin(ps); include(joinpath("docs", "make.jl"))'

LICENSE.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
The OMGP.jl package is licensed under the MIT "Expat" License:
1+
The AugmentedGaussianProcesses.jl package is licensed under the MIT "Expat" License:
22

33
> Copyright (c) 2018: Théo Galy-Fajou.
44
>

Project.toml

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
1-
name = "OMGP"
2-
uuid = "01d6f1c0-a789-11e8-1a9c-abf87115666d"
1+
name = "AugmentedGaussianProcesses"
2+
uuid = "b1c2f168-d918-11e8-38ee-334f3e5b0caa"
33
authors = ["Theo Galy-Fajou <[email protected]>"]
44
version = "0.3.1"
55

README.md

+21-10
Original file line numberDiff line numberDiff line change
@@ -1,26 +1,37 @@
1-
# OMGP!
2-
[![Build Status](https://travis-ci.org/theogf/OMGP.jl.svg?branch=master)](https://travis-ci.org/theogf/OMGP.jl)
3-
<a href="https://theogf.github.io/OMGP.jl/stable">
1+
# AugmentedGaussianProcesses!
2+
[![Build Status](https://travis-ci.org/theogf/AugmentedGaussianProcesses.jl.svg?branch=master)](https://travis-ci.org/theogf/AugmentedGaussianProcesses.jl)
3+
<a href="https://theogf.github.io/AugmentedGaussianProcesses.jl/stable">
44
<img src="https://img.shields.io/badge/docs-stable-blue.svg">
55
</a>
6-
<a href="https://theogf.github.io/OMGP.jl/latest">
6+
<a href="https://theogf.github.io/AugmentedGaussianProcesses.jl/latest">
77
<img src="https://img.shields.io/badge/docs-latest-blue.svg">
88
</a>
9-
10-
Oh My GP! is a Julia package in development for **extremely efficient Gaussian Processes algorithms**. It contains for the moment two classifiers : one based on the Bayesian SVM (BSVM), and a state-of-the-art algorithm for classification using the logistic link called X-GPC (XGPC), two regression models one classic based on Gaussian likelihood (GPRegression) and another one in development base on Student T likelihood. A multiclass classifier model is in development.
9+
10+
AugmentedGaussianProcesses! is a Julia package in development for **Data Augmented Gaussian Processes**. It contains a collection of models for different **gaussian and non-gaussian likelihoods**, which are transformed via data augmentation into **conditionally conjugate likelihood** allowing for **extremely fast inference** via block coordinate updates.
11+
12+
# The package contains at the moment :
13+
- Two GP classifier models
14+
- **BSVM** : A Classifier with a likelihood equivalent to the classic SVM
15+
- **XGPC** : A Classifier with a Bernoulli likelihood with the logistic link
16+
- Two GP Regression models
17+
- **GPRegression** : The standard Gaussian Process regression model with a Gaussian Likelihood (no data augmentation was needed here)
18+
- **StudentT** : The standard Gaussian Process regression with a Student-t likelihood (the degree of freedom ν is not optimizable for the moment)
19+
- More models in development
20+
- **MultiClass** : A multiclass classifier model, relying on a modified version of softmax
21+
- **Probit** : A Classifier with a Bernoulli likelihood with the probit link
22+
- **Online** : Allowing for all algorithms to work online as well
1123

1224
## Install the package
1325

1426
The package requires Julia 1.0
15-
Run in `Julia` press `]` and type `add OMGP` (once it has been released), it will install the package and all its requirements
16-
27+
Run in `Julia` press `]` and type `add AugmentedGaussianProcesses` (once it has been released), it will install the package and all its requirements
1728

1829
## Use the package
1930

2031
A complete documentation is currently being written, for now you can use this very basic example where `X_train` is a matrix ``N x D`` where `N` is the number of training points and `D` is the number of dimensions and `Y_train` is a vector of outputs.
2132

2233
```julia
23-
using OMGPC
34+
using AugmentedGaussianProcesses
2435
model = SparseXGPC(X_train,Y_train;Stochastic=true,batchsize=100,m=64,kernel=RBFKernel(1.0)) #Parameters after ; are optional
2536
model.train(iterations=100)
2637
Y_predic = model.predict(X_test) #For getting the label directly
@@ -40,6 +51,6 @@ Arxiv "Efficient Gaussian Process Classification using Polya-Gamma Variables" by
4051
UAI 13' "Gaussian Process for Big Data" by James Hensman, Nicolo Fusi and Neil D. Lawrence [https://arxiv.org/abs/1309.6835][arxivgpbigdata]
4152

4253
[arxivgpbigdata]:https://arxiv.org/abs/1309.6835
43-
[31b06e91]: https://github.com/theogf/OMGP.jl/blob/master/examples/Classification%20-%20SXGPC.ipynb "Classification with Sparse XGPC"
54+
[31b06e91]: https://github.com/theogf/AugmentedGaussianProcesses.jl/blob/master/examples/Classification%20-%20SXGPC.ipynb "Classification with Sparse XGPC"
4455
[arxivbsvm]:https://arxiv.org/abs/1707.05532
4556
[arxivxgpc]:https://arxiv.org/abs/1802.06383

appveyor.yml

+2-2
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ build_script:
4444
# Need to convert from shallow to complete for Pkg.clone to work
4545
- IF EXIST .git\shallow (git fetch --unshallow)
4646
- C:\projects\julia\bin\julia -e "versioninfo();
47-
Pkg.clone(pwd(), \"OMGP\"); Pkg.build(\"OMGP\")"
47+
Pkg.clone(pwd(), \"AugmentedGaussianProcesses\"); Pkg.build(\"AugmentedGaussianProcesses\")"
4848

4949
test_script:
50-
- C:\projects\julia\bin\julia -e "Pkg.test(\"OMGP\")"
50+
- C:\projects\julia\bin\julia -e "Pkg.test(\"AugmentedGaussianProcesses\")"

docs/make.jl

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
using Documenter, OMGP
1+
using Documenter, AugmentedGaussianProcesses
22

3-
makedocs(modules=[OMGP])
3+
makedocs(modules=[AugmentedGaussianProcesses])
44

55
deploydocs(
66
deps = Deps.pip("mkdocs", "python-markdown-math"),
7-
repo = "github.com/theogf/OMGP.jl.git",
7+
repo = "github.com/theogf/AugmentedGaussianProcesses.jl.git",
88
julia = "1.0"
99
)

docs/mkdocs.yml

+4-4
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
1-
site_name: OMGP.jl
2-
site_description: Website for OMGP.jl package
1+
site_name: AugmentedGaussianProcesses.jl
2+
site_description: Website for AugmentedGaussianProcesses.jl package
33
site_author: Theo Galy-Fajou
4-
site_url: https://github.com/theogf/OMGP.jl
5-
repo_url: https://github.com/theogf/OMGP.jl
4+
site_url: https://github.com/theogf/AugmentedGaussianProcesses.jl
5+
repo_url: https://github.com/theogf/AugmentedGaussianProcesses.jl
66

77
theme: readthedocs
88

docs/src/index.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,16 @@
1-
# OMGP.jl Documentation
1+
# AugmentedGaussianProcesses.jl Documentation
22

33

44
```@contents
5-
OMGP
5+
AugmentedGaussianProcesses
66
```
77

88
## Index
99

1010
```@index
11-
Modules = [OMGP]
11+
Modules = [AugmentedGaussianProcesses]
1212
```
1313

1414
# General introduction
1515

16-
OMGP is a package providing
16+
AugmentedGaussianProcesses is a package providing

examples/Classification - SXGPC.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -7,8 +7,8 @@
77
"outputs": [],
88
"source": [
99
"using Plots; pyplot();\n",
10-
"push!(LOAD_PATH,\"/home/theo/OMGP/src\")\n",
11-
"using OMGP;"
10+
"push!(LOAD_PATH,\"/home/theo/AugmentedGaussianProcesses/src\")\n",
11+
"using AugmentedGaussianProcesses;"
1212
]
1313
},
1414
{

examples/classification_SXGPC.jl

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ pyplot()
33
#unicodeplots()
44
using Distributions
55
using ValueHistories
6-
using OMGP
6+
using AugmentedGaussianProcesses
77
using ProfileView
88
doPlot = false
99
use_dataset = false
@@ -57,7 +57,7 @@ initPoints = copy(model.inducingPoints)
5757
iter_points = collect(1:1:1000)
5858
metrics = MVHistory()
5959
Parameters = MVHistory()
60-
function StoreIt(model::OMGP.GPModel,iter;hyper=false)#;iter_points=[],LogArrays=[],X_test=0,y_test=0)
60+
function StoreIt(model::AugmentedGaussianProcesses.GPModel,iter;hyper=false)#;iter_points=[],LogArrays=[],X_test=0,y_test=0)
6161
if in(iter,iter_points)
6262
if !hyper
6363
push!(metrics,:time_init,iter,time_ns()*1e-9)

perf/bsvm.jl

+7-7
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
cd(dirname(@__FILE__))
22
using BenchmarkTools
3-
using OMGP
3+
using AugmentedGaussianProcesses
44
using Distances, LinearAlgebra, Dates, MLDataUtils, DelimitedFiles
55
suite = BenchmarkGroup()
66
suite["Full"] = BenchmarkGroup(["init","elbo","computematrices","updatevariational","updatehyperparam","predic","predicproba"])
@@ -24,12 +24,12 @@ suite["Sparse"]["init"] = @benchmarkable SparseBSVM($X_train,$y_train,kernel=$ke
2424
suite["SparseStoch"]["init"] = @benchmarkable SparseBSVM($X_train,$y_train,kernel=$kernel,Autotuning=true,μ_init=ones(Float64,$m),Stochastic=true,m=$m,batchsize=$batchsize)
2525
for KT in ["Full","Sparse","SparseStoch"]
2626
models[KT].train(iterations=1)
27-
suite[KT]["elbo"] = @benchmarkable OMGP.ELBO($(models[KT]))
28-
suite[KT]["computematrices"] = @benchmarkable OMGP.computeMatrices!(model) setup=(model=deepcopy($(models[KT])))
29-
suite[KT]["updatevariational"] = @benchmarkable OMGP.variational_updates!(model,1) setup=(model=deepcopy($(models[KT])))
30-
suite[KT]["updatehyperparam"] = @benchmarkable OMGP.updateHyperParameters!(model) setup=(model=deepcopy($(models[KT])))
31-
suite[KT]["predic"] = @benchmarkable OMGP.probitpredict(model,$X_test) setup=(model=deepcopy($(models[KT])))
32-
suite[KT]["predicproba"] = @benchmarkable OMGP.probitpredictproba(model,X_test) setup=(model=deepcopy($(models[KT])))
27+
suite[KT]["elbo"] = @benchmarkable AugmentedGaussianProcesses.ELBO($(models[KT]))
28+
suite[KT]["computematrices"] = @benchmarkable AugmentedGaussianProcesses.computeMatrices!(model) setup=(model=deepcopy($(models[KT])))
29+
suite[KT]["updatevariational"] = @benchmarkable AugmentedGaussianProcesses.variational_updates!(model,1) setup=(model=deepcopy($(models[KT])))
30+
suite[KT]["updatehyperparam"] = @benchmarkable AugmentedGaussianProcesses.updateHyperParameters!(model) setup=(model=deepcopy($(models[KT])))
31+
suite[KT]["predic"] = @benchmarkable AugmentedGaussianProcesses.probitpredict(model,$X_test) setup=(model=deepcopy($(models[KT])))
32+
suite[KT]["predicproba"] = @benchmarkable AugmentedGaussianProcesses.probitpredictproba(model,X_test) setup=(model=deepcopy($(models[KT])))
3333
end
3434

3535
if isfile(paramfile)

perf/kernel.jl

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
cd(dirname(@__FILE__))
22
using BenchmarkTools,Traceur,Profile,ProfileView
3-
using OMGP.KernelModule
3+
using AugmentedGaussianProcesses.KernelModule
44
using Distances, LinearAlgebra, Dates
55
using Random: seed!
66
suite = BenchmarkGroup()

perf/multiclass.jl

+7-7
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
cd(dirname(@__FILE__))
22
using BenchmarkTools
3-
using OMGP
3+
using AugmentedGaussianProcesses
44
using Distances, LinearAlgebra, Dates, DelimitedFiles
55
using MLDataUtils: splitobs
66
suite = BenchmarkGroup()
@@ -33,12 +33,12 @@ suite["SparseStochKStoch"]["init"] = @benchmarkable SparseMultiClass($X_train,$y
3333
for KT in ["Full","FullKStoch","Sparse","SparseStoch","SparseStochKStoch"]
3434
println(KT)
3535
models[KT].train(iterations=1)
36-
suite[KT]["elbo"] = @benchmarkable OMGP.ELBO(model) setup=(model=deepcopy($(models[KT])))
37-
suite[KT]["computematrices"] = @benchmarkable OMGP.computeMatrices!(model) setup=(model=deepcopy($(models[KT])))
38-
suite[KT]["updatevariational"] = @benchmarkable OMGP.variational_updates!(model,1) setup=(model=deepcopy($(models[KT])))
39-
suite[KT]["updatehyperparam"] = @benchmarkable OMGP.updateHyperParameters!(model) setup=(model=deepcopy($(models[KT])))
40-
suite[KT]["predic"] = @benchmarkable OMGP.multiclasspredict(model,$X_test) setup=(model=deepcopy($(models[KT])))
41-
suite[KT]["predicproba"] = @benchmarkable OMGP.multiclasspredictproba(model,$X_test) setup=(model=deepcopy($(models[KT])))
36+
suite[KT]["elbo"] = @benchmarkable AugmentedGaussianProcesses.ELBO(model) setup=(model=deepcopy($(models[KT])))
37+
suite[KT]["computematrices"] = @benchmarkable AugmentedGaussianProcesses.computeMatrices!(model) setup=(model=deepcopy($(models[KT])))
38+
suite[KT]["updatevariational"] = @benchmarkable AugmentedGaussianProcesses.variational_updates!(model,1) setup=(model=deepcopy($(models[KT])))
39+
suite[KT]["updatehyperparam"] = @benchmarkable AugmentedGaussianProcesses.updateHyperParameters!(model) setup=(model=deepcopy($(models[KT])))
40+
suite[KT]["predic"] = @benchmarkable AugmentedGaussianProcesses.multiclasspredict(model,$X_test) setup=(model=deepcopy($(models[KT])))
41+
suite[KT]["predicproba"] = @benchmarkable AugmentedGaussianProcesses.multiclasspredictproba(model,$X_test) setup=(model=deepcopy($(models[KT])))
4242
end
4343

4444
if isfile(paramfile)

perf/xgpc.jl

+7-7
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
cd(dirname(@__FILE__))
22
using BenchmarkTools
3-
using OMGP
3+
using AugmentedGaussianProcesses
44
using Distances, LinearAlgebra, Dates, MLDataUtils, DelimitedFiles
55
suite = BenchmarkGroup()
66
suite["Full"] = BenchmarkGroup(["init","elbo","computematrices","updatevariational","updatehyperparam","predic","predicproba"])
@@ -24,12 +24,12 @@ suite["Sparse"]["init"] = @benchmarkable SparseXGPC($X_train,$y_train,kernel=$ke
2424
suite["SparseStoch"]["init"] = @benchmarkable SparseXGPC($X_train,$y_train,kernel=$kernel,Autotuning=true,μ_init=ones(Float64,$m),Stochastic=true,m=$m,batchsize=$batchsize)
2525
for KT in ["Full","Sparse","SparseStoch"]
2626
models[KT].train(iterations=1)
27-
suite[KT]["elbo"] = @benchmarkable OMGP.ELBO($(models[KT]))
28-
suite[KT]["computematrices"] = @benchmarkable OMGP.computeMatrices!(model) setup=(model=deepcopy($(models[KT])))
29-
suite[KT]["updatevariational"] = @benchmarkable OMGP.variational_updates!(model,1) setup=(model=deepcopy($(models[KT])))
30-
suite[KT]["updatehyperparam"] = @benchmarkable OMGP.updateHyperParameters!(model) setup=(model=deepcopy($(models[KT])))
31-
suite[KT]["predic"] = @benchmarkable OMGP.logitpredict(model,$X_test) setup=(model=deepcopy($(models[KT])))
32-
suite[KT]["predicproba"] = @benchmarkable OMGP.logitpredictproba(model,X_test) setup=(model=deepcopy($(models[KT])))
27+
suite[KT]["elbo"] = @benchmarkable AugmentedGaussianProcesses.ELBO($(models[KT]))
28+
suite[KT]["computematrices"] = @benchmarkable AugmentedGaussianProcesses.computeMatrices!(model) setup=(model=deepcopy($(models[KT])))
29+
suite[KT]["updatevariational"] = @benchmarkable AugmentedGaussianProcesses.variational_updates!(model,1) setup=(model=deepcopy($(models[KT])))
30+
suite[KT]["updatehyperparam"] = @benchmarkable AugmentedGaussianProcesses.updateHyperParameters!(model) setup=(model=deepcopy($(models[KT])))
31+
suite[KT]["predic"] = @benchmarkable AugmentedGaussianProcesses.logitpredict(model,$X_test) setup=(model=deepcopy($(models[KT])))
32+
suite[KT]["predicproba"] = @benchmarkable AugmentedGaussianProcesses.logitpredictproba(model,X_test) setup=(model=deepcopy($(models[KT])))
3333
end
3434

3535
if isfile(paramfile)

src/OMGP.jl

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
General Framework for the data augmented Gaussian Processes
44
55
"""
6-
module OMGP
6+
module AugmentedGaussianProcesses
77

88
@enum GPModelType Undefined=0 BSVM=1 XGPC=2 Regression=3 StudentT=4 MultiClassGP=5
99

src/functions/IO_model.jl

+8-8
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
11
# module IO_model
22

33
using JLD2, FileIO
4-
# using OMGP
5-
import OMGP.KernelModule
6-
import OMGP.KernelModule.HyperParametersModule#: HyperParameter, OpenBound, NullBound, Interval
4+
# using AugmentedGaussianProcesses
5+
import AugmentedGaussianProcesses.KernelModule
6+
import AugmentedGaussianProcesses.KernelModule.HyperParametersModule#: HyperParameter, OpenBound, NullBound, Interval
77
export save_trained_model, save_model,load_trained_model,load_model
88
#Needs to be redefined
99
function save_model(filename::String,model::GPModel)
@@ -127,15 +127,15 @@ end
127127
function writeextrabits(file,model::GPModel)
128128
end
129129

130-
function create_model(sparse::Bool,modeltype::OMGP.GPModelType)
131-
if modeltype == OMGP.GPModelType(1) #BSVM
130+
function create_model(sparse::Bool,modeltype::AugmentedGaussianProcesses.GPModelType)
131+
if modeltype == AugmentedGaussianProcesses.GPModelType(1) #BSVM
132132
return model = sparse ? SparseBSVM() : BatchBSVM()
133-
elseif modeltype == OMGP.GPModelType(2) #XGPC
133+
elseif modeltype == AugmentedGaussianProcesses.GPModelType(2) #XGPC
134134
return model = sparse ? SparseXGPC() : BatchXGPC()
135-
elseif modeltype == OMGP.GPModelType(3) #Regression
135+
elseif modeltype == AugmentedGaussianProcesses.GPModelType(3) #Regression
136136
return model = sparse ? SparseGPRegression() :
137137
GPRegression()
138-
elseif modeltype == OMGP.GPModelType(4) #StudentT
138+
elseif modeltype == AugmentedGaussianProcesses.GPModelType(4) #StudentT
139139
return model = sparse ? SparseStudentT() : BatchStudentT()
140140
else
141141
@warn "Model writing for this model is not implemented yet"

src/kernels/hyperparameters/HyperParametersModule.jl

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
module HyperParametersModule
2-
using OMGP.GradDescent
2+
using AugmentedGaussianProcesses.GradDescent
33
import Base: convert, eltype, promote_type, show, string, ==, *, /, +, -, ^, isless;
44

55
export

src/kmeans/KMeansModule.jl

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ using Distributions
77
using StatsBase
88
using LinearAlgebra
99
using Clustering
10-
using OMGP.KernelModule
10+
using AugmentedGaussianProcesses.KernelModule
1111

1212
export KMeansInducingPoints
1313
export KMeansAlg, StreamOnline, Webscale, CircleKMeans, DataSelection

src/models/StudentT_Functions.jl

+4-4
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Functions related to the Student T likelihood (StudentT)
22
"Update the local variational parameters of the full batch GP StudentT"
33
function local_update!(model::BatchStudentT)
4-
model.β = 0.5.*(diag(model.Σ)+model.μ.^2-2.0.*model.μ.*model.y+(model.y.^2).+model.ν)
4+
model.β = 0.5.*(diag(model.Σ)+(model.μ.-model.y).^2+model.ν)
55
model.θ = 0.5.*(model.ν.+1.0)./model.β
66
end
77

@@ -14,7 +14,7 @@ end
1414

1515
"Update the local variational parameters of the sparse GP StudentT"
1616
function local_update!(model::SparseStudentT)
17-
model.β = 0.5.*(model.Ktilde+sum((model.κ*model.Σ).*model.κ,dims=2)[:]+(model.κ*model.μ).^2-2.0.*(model.κ*model.μ).*model.y[model.MBIndices]+(model.y[model.MBIndices].^2).+model.ν)
17+
model.β = 0.5.*(model.Ktilde+sum((model.κ*model.Σ).*model.κ,dims=2)[:]+(model.κ*model.μ.-model.y[model.MBIndices]).^2.+model.ν)
1818
model.θ = 0.5.*(model.ν.+1.0)./model.β
1919

2020
end
@@ -92,8 +92,8 @@ end
9292
"Return the KL divergence for the inverse gamma distributions"
9393
function InverseGammaKL(model::GPModel)
9494
α_p = β_p = model.ν/2;
95-
return (model.α-α_p)*digamma(model.α).-log(gamma(model.α)).+log(gamma(α_p))
96-
.+ α_p.*(log.(model.β).-log(β_p)).+model.α.*(β_p.-model.β)./model.β
95+
return (α_p.-model.α)*digamma(α_p).-log(gamma(α_p)).+log(gamma(model.α))
96+
.+ model.α*(log(β_p).-log.(model.β)).+α_p.*(model.β.-β_p)./β_p
9797
end
9898

9999
"Return a function computing the gradient of the ELBO given the kernel hyperparameters for a StudentT Model"

test/runtests.jl

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
using OMGP
1+
using AugmentedGaussianProcesses
22
using Test
33

44
# write your own tests here

0 commit comments

Comments
 (0)