diff --git a/README.md b/README.md index b8b43f3..dda312c 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,23 @@ # ml_uwr Materials for my Machine Learning course taught at the University of Wroclaw. -### Exam +# Learning materials +| | Topic | Learning materials | +|------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| Lecture 1 | Introduction to ML | [slides](lectures/01-intro.pdf), Murphy Ch. 1 | +| Lecture 2 | Prob. review | [slides](lectures/02-prob-review.pdf) notebook [1](lectures/02_binomial_polls.ipynb) [2](lectures/02_entropy.ipynb), Murphy Ch. 2 | +| Lecture 3 | Decision Trees | [TUM course](https://argmax.ai/ml-course/lecture-02-trees/) [CS229](http://cs229.stanford.edu/notes/cs229-notes-dt.pdf), Murphy Ch. 16 | +| Lecture 4 | Random Forests | [Breiman paper](https://link.springer.com/article/10.1023/A:1010933404324) [Breiman's tutorial](https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf), Murphy Ch. 5 & 16 | +| Lecture 5 | Adaboost | [notebook](lectures/05_adabost_demo.ipynb) [notebook](lectures/08-gradient-boosting-demo.ipynb) Murphy Ch. 16 [xgboost slides](https://homes.cs.washington.edu/~tqchen/data/pdf/BoostedTree.pdf) | +| Lecture 6 | Linear and Logistic Regression | notebook [1](lectures/06-least-squares.ipynb) [2](lectures/06-logistic-regression.ipynb) [CS229](http://cs229.stanford.edu/notes/cs229-notes1.pdf) | +| Lecture 7 | More on Regression, Regularization, Lasso | [notes](lectures/07-inprogress-lecture.pdf) [notebook](lectures/07-regressions_robust_lasso.ipynb) | +| Lecture 8 | Discrimantive vs Generative classifiers | [notebook](lectures/08-generative_discriminative.ipynb) [naive bayes](lectures/03_naive_bayes.ipynb) [cs229 notes](http://cs229.stanford.edu/notes2019fall/cs229-notes2.pdf) Murphy Ch. 4 | +| Lecture 9 | SVM #1 | [cs229 notes](http://cs229.stanford.edu/notes2019fall/cs229-notes3.pdf) [tutorial](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf) | +| Lecture 10 | SVM #2, Review of Sup. Learning | [slides](lectures/10-supervised_review.pdf) | +| Lecture 11 | kMeans | [notebook](lectures/11-kMeans-SOM.ipynb) [CS229 kMeans](http://cs229.stanford.edu/notes/cs229-notes7a.pdf) [CS229 EM1](http://cs229.stanford.edu/notes/cs229-notes7b.pdf) [CS229 EM2](http://cs229.stanford.edu/notes/cs229-notes8.pdf) | +| Lecture 12 | PCA | [notebook](lectures/12_PCA.ipynb) [CS229](http://cs229.stanford.edu/notes/cs229-notes10.pdf) | +| Lecture 13 | ICA + NMF | [notebook ICA](lectures/13_ICA.ipynb) [notebook NMF](lectures/13-nmf.ipynb) [CS229](http://cs229.stanford.edu/notes/cs229-notes11.pdf) | +| Lecture 14 | Intro to PGMs and HMMs | Bishop Ch. 8 & 13 | +| Lecture 15 | Company presentations | | + -Final exam poll: -https://doodle.com/poll/2iykztedmyzaqfa6