@@ -13,7 +13,7 @@ open import Cat.Prelude
1313
1414import Cat.Reasoning
1515import Cat.Displayed.Reasoning
16- import Cat.Displayed.Functor.VerticalReasoning
16+ import Cat.Displayed.Functor.Vertical.Reasoning
1717```
1818-->
1919
@@ -158,8 +158,8 @@ allows us to keep morphisms displayed over the same base.
158158```agda
159159 module _ {L : Vertical-functor ℰ ℱ} {R : Vertical-functor ℱ ℰ} (adj : L ⊣↓ R) where
160160 private
161- module L = Cat.Displayed.Functor.VerticalReasoning L
162- module R = Cat.Displayed.Functor.VerticalReasoning R
161+ module L = Cat.Displayed.Functor.Vertical.Reasoning L
162+ module R = Cat.Displayed.Functor.Vertical.Reasoning R
163163 open _⊣↓_ adj
164164```
165165-->
@@ -258,8 +258,8 @@ If $L \dashv R$ is a vertical adjunction, then $R$ is a fibred functor.
258258 → is-vertical-fibred R
259259 Vert-right-adjoint-fibred {L = L} {R = R} adj {f = f} f′ cart = R-cart where
260260 open is-cartesian
261- module L = Cat.Displayed.Functor.VerticalReasoning L
262- module R = Cat.Displayed.Functor.VerticalReasoning R
261+ module L = Cat.Displayed.Functor.Vertical.Reasoning L
262+ module R = Cat.Displayed.Functor.Vertical.Reasoning R
263263```
264264
265265Let $f : \cC(x,y)$ and $f' : \cF(x', y')_ {f}$ be a cartesian morphism.
@@ -333,8 +333,8 @@ Dually, vertical left adjoints are opfibred.
333333``` agda
334334 Vert-left-adjoint-opfibred {L = L} {R = R} adj {f = f} f′ cocart = L-cocart where
335335 open is-cocartesian
336- module L = Cat.Displayed.Functor.VerticalReasoning L
337- module R = Cat.Displayed.Functor.VerticalReasoning R
336+ module L = Cat.Displayed.Functor.Vertical.Reasoning L
337+ module R = Cat.Displayed.Functor.Vertical.Reasoning R
338338
339339 L-cocart : is-cocartesian ℱ f (L.F₁′ f′)
340340 L-cocart .universal m h′ =
0 commit comments