@@ -39,10 +39,10 @@ square like so:
3939 A && X \\
4040 \\
4141 B && {Y\text{.}}
42- \arrow["f ", from=1-1, to=1-3]
43- \arrow["g ", from=3-1, to=3-3]
44- \arrow["u "', from=1-1, to=3-1]
45- \arrow["v ", from=1-3, to=3-3]
42+ \arrow["u ", from=1-1, to=1-3]
43+ \arrow["v ", from=3-1, to=3-3]
44+ \arrow["f "', from=1-1, to=3-1]
45+ \arrow["g ", from=1-3, to=3-3]
4646\end{tikzcd}\]
4747~~~
4848
@@ -66,17 +66,17 @@ and $g$ *right lifts against* $f$ if for every commutative square
6666 A && X \\
6767 \\
6868 B && {Y\text{.}}
69- \arrow["f ", from=1-1, to=1-3]
70- \arrow["g ", from=3-1, to=3-3]
71- \arrow["u "', from=1-1, to=3-1]
72- \arrow["v ", from=1-3, to=3-3]
69+ \arrow["u ", from=1-1, to=1-3]
70+ \arrow["v ", from=3-1, to=3-3]
71+ \arrow["f "', from=1-1, to=3-1]
72+ \arrow["g ", from=1-3, to=3-3]
7373\end{tikzcd}\]
7474~~~
7575
7676there [[ merely]] exists a lifting $w$.
7777
7878We can also talk about objects with left or right lifting properties.
79- An object $P : \cC$ left lefts against a morphism $f$ if for every
79+ An object $P : \cC$ left lifts against a morphism $f$ if for every
8080cospan $P \xto{u} X \xot{f} Y$, there merely exists a map $w : \cC(P,
8181X)$ with $f \circ w = u$.
8282
@@ -343,15 +343,15 @@ $l$ and $k$ are both lifts of the outer square
343343
344344~~~ {.quiver}
345345\begin{tikzcd}
346- a && b \\
346+ A && X \\
347347 \\
348- c && d.
349- \arrow["f ", from=1-1, to=1-3]
350- \arrow["u "', from=1-1, to=3-1]
351- \arrow["l"', shift right, from=1-3, to=3-1 ]
352- \arrow["k", shift left , from=1-3 , to=3-1 ]
353- \arrow["v ", from=1-3 , to=3 -3]
354- \arrow["g "', from=3-1, to=3-3]
348+ B && Y
349+ \arrow["u ", from=1-1, to=1-3]
350+ \arrow["f "', from=1-1, to=3-1]
351+ \arrow["g", from=1-3, to=3-3 ]
352+ \arrow["k"' , shift right=2 , from=3-1 , to=1-3 ]
353+ \arrow["l ", shift left=2, from=3-1 , to=1 -3]
354+ \arrow["v "', from=3-1, to=3-3]
355355\end{tikzcd}
356356~~~
357357
0 commit comments