Skip to content

Commit 2806523

Browse files
committed
chore: adotalypse
1 parent 6440ba4 commit 2806523

File tree

189 files changed

+870
-869
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

189 files changed

+870
-869
lines changed

src/1Lab/Counterexamples/Isovalence.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ that four copies of the identity path are identical to a single copy:
9393
```agda
9494
at-id : P A id-iso
9595
at-id = ap (iso id (λ x → refl)) $ funext λ x →
96-
refl ∙ refl ∙ refl ∙ refl ≡⟨ (∙-idl _ ·· ∙-idl _ ·· ∙-idl _) ⟩
96+
refl ∙ refl ∙ refl ∙ refl ≡⟨ (∙-idl _ ∙∙ ∙-idl _ ∙∙ ∙-idl _) ⟩
9797
refl ∎
9898
```
9999

src/1Lab/Equiv.lagda.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -774,7 +774,7 @@ module Iso {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} ((f , f-iso) : Iso A B) whe
774774
open is-iso f-iso renaming (inverse to inverse-iso)
775775
776776
injective : ∀ {x y} → f x ≡ f y → x ≡ y
777-
injective p = sym (linv _) ·· ap inv p ·· linv _
777+
injective p = sym (linv _) ∙∙ ap inv p ∙∙ linv _
778778
779779
inverse : Iso B A
780780
inverse = inv , inverse-iso
@@ -891,8 +891,8 @@ precomposition with $p\inv$.
891891
∙-pre-equiv p .fst q = p ∙ q
892892
∙-pre-equiv p .snd = is-iso→is-equiv λ where
893893
.inv q → sym p ∙ q
894-
.rinv q → ∙-assoc p _ _ ·· ap (_∙ q) (∙-invr p) ·· ∙-idl q
895-
.linv q → ∙-assoc (sym p) _ _ ·· ap (_∙ q) (∙-invl p) ·· ∙-idl q
894+
.rinv q → ∙-assoc p _ _ ∙∙ ap (_∙ q) (∙-invr p) ∙∙ ∙-idl q
895+
.linv q → ∙-assoc (sym p) _ _ ∙∙ ap (_∙ q) (∙-invl p) ∙∙ ∙-idl q
896896
```
897897

898898
Similarly, *post*composition with $p$ is inverted on both sides by
@@ -903,8 +903,8 @@ postcomposition with $p\inv$, so it too is an equivalence.
903903
∙-post-equiv p .fst q = q ∙ p
904904
∙-post-equiv p .snd = is-iso→is-equiv λ where
905905
.inv q → q ∙ sym p
906-
.rinv q → sym (∙-assoc q _ _) ·· ap (q ∙_) (∙-invl p) ·· ∙-idr q
907-
.linv q → sym (∙-assoc q _ _) ·· ap (q ∙_) (∙-invr p) ·· ∙-idr q
906+
.rinv q → sym (∙-assoc q _ _) ∙∙ ap (q ∙_) (∙-invl p) ∙∙ ∙-idr q
907+
.linv q → sym (∙-assoc q _ _) ∙∙ ap (q ∙_) (∙-invr p) ∙∙ ∙-idr q
908908
```
909909

910910
### The Lift type

src/1Lab/HIT/Truncation.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -282,7 +282,7 @@ proposition.
282282
is-constant→image-is-prop bset f fconst (a , x) (b , y) =
283283
Σ-prop-path (λ _ → squash)
284284
(∥-∥-elim₂ (λ _ _ → bset _ _)
285-
(λ { (f*a , p) (f*b , q) → sym p ·· fconst f*a f*b ·· q }) x y)
285+
(λ { (f*a , p) (f*b , q) → sym p ∙∙ fconst f*a f*b ∙∙ q }) x y)
286286
```
287287

288288
Using the image factorisation, we can project from a propositional

src/1Lab/Path.lagda.md

Lines changed: 32 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -1464,10 +1464,10 @@ face for the [square] at the start of this section.
14641464
[square]: 1Lab.Path.html#composition
14651465
14661466
```agda
1467-
_··_··_ : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
1467+
_∙∙_∙∙_ : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
14681468
→ w ≡ x → x ≡ y → y ≡ z
14691469
→ w ≡ z
1470-
(p ·· q ·· r) i = hcomp (∂ i) sys module ··-sys where
1470+
(p ∙∙ q ∙∙ r) i = hcomp (∂ i) sys module ∙∙-sys where
14711471
sys : ∀ j → Partial (∂ i ∨ ~ j) _
14721472
sys j (i = i0) = p (~ j)
14731473
sys j (i = i1) = r j
@@ -1476,21 +1476,21 @@ _··_··_ : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
14761476
14771477
<!--
14781478
```agda
1479-
{-# DISPLAY hcomp _ (··-sys.sys {ℓ} {A} {w} {x} {y} {z} p q r i) = _··_··_ {ℓ} {A} {w} {x} {y} {z} p q r i #-}
1479+
{-# DISPLAY hcomp _ (∙∙-sys.sys {ℓ} {A} {w} {x} {y} {z} p q r i) = _∙∙_∙∙_ {ℓ} {A} {w} {x} {y} {z} p q r i #-}
14801480
```
14811481
-->
14821482
14831483
Since it will be useful later, we also give an explicit name for the
14841484
*filler* of the double composition square. Since `Square`{.Agda}
14851485
expresses an equation between paths, we can read the type of
1486-
`··-filler`{.Agda} as saying that $p\inv \cdot (p \dcomp q \dcomp r) = q
1486+
`∙∙-filler`{.Agda} as saying that $p\inv \cdot (p \dcomp q \dcomp r) = q
14871487
\cdot r$.
14881488
14891489
```agda
1490-
··-filler : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
1490+
∙∙-filler : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
14911491
→ (p : w ≡ x) (q : x ≡ y) (r : y ≡ z)
1492-
→ Square (sym p) q (p ·· q ·· r) r
1493-
··-filler p q r i j = hfill (∂ j) i λ where
1492+
→ Square (sym p) q (p ∙∙ q ∙∙ r) r
1493+
∙∙-filler p q r i j = hfill (∂ j) i λ where
14941494
k (j = i0) → p (~ k)
14951495
k (j = i1) → r k
14961496
k (k = i0) → q j
@@ -1525,12 +1525,12 @@ for the single composition, whose type we read as saying that $\refl
15251525
```agda
15261526
_∙_
15271527
: ∀ {ℓ} {A : Type ℓ} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
1528-
p ∙ q = refl ·· p ·· q
1528+
p ∙ q = refl ∙∙ p ∙∙ q
15291529
15301530
∙-filler
15311531
: ∀ {ℓ} {A : Type ℓ} {x y z : A}
15321532
→ (p : x ≡ y) (q : y ≡ z) → Square refl p (p ∙ q) q
1533-
∙-filler {x = x} {y} {z} p q = ··-filler refl p q
1533+
∙-filler {x = x} {y} {z} p q = ∙∙-filler refl p q
15341534
15351535
infixr 30 _∙_
15361536
```
@@ -1692,7 +1692,7 @@ answer, fortunately, is no: we can show that any triple of paths has a
16921692
*square* whose boundary includes the two *lines* we're comparing.
16931693
16941694
```agda
1695-
··-unique
1695+
∙∙-unique
16961696
: ∀ {ℓ} {A : Type ℓ} {w x y z : A}
16971697
→ (p : w ≡ x) (q : x ≡ y) (r : y ≡ z)
16981698
→ (α β : Σ[ s ∈ (w ≡ z) ] Square (sym p) q s r)
@@ -1706,7 +1706,7 @@ Note that the proof of this involves filling a cube in a context that
17061706
*already* has an interval variable in scope - a hypercube!
17071707
17081708
```agda
1709-
··-unique {w = w} {x} {y} {z} p q r (α , α-fill) (β , β-fill) =
1709+
∙∙-unique {w = w} {x} {y} {z} p q r (α , α-fill) (β , β-fill) =
17101710
λ i → (λ j → square i j) , (λ j k → cube i j k)
17111711
where
17121712
cube : (i j : I) → p (~ j) ≡ r j
@@ -1783,17 +1783,17 @@ edges going up rather than down. This is to match the direction of the
17831783
3D diagram above. The colours are also matching.
17841784
17851785
Readers who are already familiar with the notion of h-level will have
1786-
noticed that the proof `··-unique`{.Agda} expresses that the type of
1787-
double composites `p ·· q ·· r` is a _proposition_, not that it is
1788-
contractible. However, since it is inhabited (by `_··_··_`{.Agda} and
1786+
noticed that the proof `∙∙-unique`{.Agda} expresses that the type of
1787+
double composites `p ∙∙ q ∙∙ r` is a _proposition_, not that it is
1788+
contractible. However, since it is inhabited (by `_∙∙_∙∙_`{.Agda} and
17891789
its filler), it is contractible:
17901790
17911791
```agda
1792-
··-contract : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
1792+
∙∙-contract : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
17931793
→ (p : w ≡ x) (q : x ≡ y) (r : y ≡ z)
17941794
→ (β : Σ[ s ∈ (w ≡ z) ] Square (sym p) q s r)
1795-
→ (p ·· q ·· r , ··-filler p q r) ≡ β
1796-
··-contract p q r β = ··-unique p q r _ β
1795+
→ (p ∙∙ q ∙∙ r , ∙∙-filler p q r) ≡ β
1796+
∙∙-contract p q r β = ∙∙-unique p q r _ β
17971797
```
17981798
17991799
<!--
@@ -1804,13 +1804,13 @@ its filler), it is contractible:
18041804
→ Square refl p r q
18051805
→ r ≡ p ∙ q
18061806
∙-unique {p = p} {q} r square i =
1807-
··-unique refl p q (_ , square) (_ , (∙-filler p q)) i .fst
1807+
∙∙-unique refl p q (_ , square) (_ , (∙-filler p q)) i .fst
18081808
1809-
··-unique' : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
1809+
∙∙-unique' : ∀ {ℓ} {A : Type ℓ} {w x y z : A}
18101810
→ {p : w ≡ x} {q : x ≡ y} {r : y ≡ z} {s : w ≡ z}
18111811
→ (β : Square (sym p) q s r)
1812-
→ s ≡ p ·· q ·· r
1813-
··-unique' β i = ··-contract _ _ _ (_ , β) (~ i) .fst
1812+
→ s ≡ p ∙∙ q ∙∙ r
1813+
∙∙-unique' β i = ∙∙-contract _ _ _ (_ , β) (~ i) .fst
18141814
```
18151815
-->
18161816
@@ -1850,7 +1850,7 @@ ap-square f α i j = f (α i j)
18501850
18511851
Despite the nightmare type (to allow `f` to be a dependent function),
18521852
the definition is just as straightforward as that of `ap`{.Agda}. Using
1853-
this with `··filler`{.Agda}, we get a square with boundary
1853+
this with `∙∙filler`{.Agda}, we get a square with boundary
18541854
18551855
~~~{.quiver}
18561856
\[\begin{tikzcd}[ampersand replacement=\&]
@@ -1864,19 +1864,19 @@ this with `··filler`{.Agda}, we get a square with boundary
18641864
\end{tikzcd}\]
18651865
~~~
18661866
1867-
but note that our lemma `··-unique'`{.Agda} says precisely that, for
1867+
but note that our lemma `∙∙-unique'`{.Agda} says precisely that, for
18681868
every square with this boundary, we can get a square connecting the red
18691869
path $\ap{f}{(p \dcomp q \dcomp r)}$ and the composition $\ap{f}{p} \dcomp
18701870
\ap{f}{q} \dcomp \ap{f}{r}$.
18711871
18721872
```agda
1873-
ap-·· : (f : A → B) {x y z w : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ w)
1874-
→ ap f (p ·· q ·· r) ≡ ap f p ·· ap f q ·· ap f r
1875-
ap-·· f p q r = ··-unique' (ap-square f (··-filler p q r))
1873+
ap-∙∙ : (f : A → B) {x y z w : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ w)
1874+
→ ap f (p ∙∙ q ∙∙ r) ≡ ap f p ∙∙ ap f q ∙∙ ap f r
1875+
ap-∙∙ f p q r = ∙∙-unique' (ap-square f (∙∙-filler p q r))
18761876
18771877
ap-∙ : (f : A → B) {x y z : A} (p : x ≡ y) (q : y ≡ z)
18781878
→ ap f (p ∙ q) ≡ ap f p ∙ ap f q
1879-
ap-∙ f p q = ap-·· f refl p q
1879+
ap-∙ f p q = ap-∙∙ f refl p q
18801880
```
18811881
18821882
## Dependent paths, continued
@@ -2079,7 +2079,7 @@ with weird names are defined:
20792079
→ (q : x ≡ y)
20802080
→ (r : y ≡ z)
20812081
→ w ≡ z
2082-
≡⟨⟩≡⟨⟩-syntax w x p q r = p ·· q ·· r
2082+
≡⟨⟩≡⟨⟩-syntax w x p q r = p ∙∙ q ∙∙ r
20832083
20842084
infixr 2 ≡⟨⟩-syntax
20852085
syntax ≡⟨⟩-syntax x q p = x ≡⟨ p ⟩ q
@@ -2233,7 +2233,7 @@ double-composite
22332233
: ∀ {ℓ} {A : Type ℓ}
22342234
→ {x y z w : A}
22352235
→ (p : x ≡ y) (q : y ≡ z) (r : z ≡ w)
2236-
→ p ·· q ·· r ≡ p ∙ q ∙ r
2236+
→ p ∙∙ q ∙∙ r ≡ p ∙ q ∙ r
22372237
double-composite p q r i j =
22382238
hcomp (i ∨ ∂ j) λ where
22392239
k (i = i1) → ∙-filler' p (q ∙ r) k j
@@ -2265,7 +2265,7 @@ to adjust the path by a bunch of transports:
22652265
22662266
```agda
22672267
where
2268-
lemma : _ ≡ (sym left ·· p ·· right)
2268+
lemma : _ ≡ (sym left ∙∙ p ∙∙ right)
22692269
lemma i j = hcomp (~ i ∨ ∂ j) λ where
22702270
k (k = i0) → transp (λ j → A) i (p j)
22712271
k (i = i0) → hfill (∂ j) k λ where
@@ -2339,10 +2339,10 @@ infixl 32 _▷_
23392339
Square≡double-composite-path : ∀ {ℓ} {A : Type ℓ}
23402340
→ {w x y z : A}
23412341
→ {p : x ≡ w} {q : x ≡ y} {s : w ≡ z} {r : y ≡ z}
2342-
→ Square p q s r ≡ (sym p ·· q ·· r ≡ s)
2342+
→ Square p q s r ≡ (sym p ∙∙ q ∙∙ r ≡ s)
23432343
Square≡double-composite-path {p = p} {q} {s} {r} k =
23442344
PathP (λ i → p (i ∨ k) ≡ r (i ∨ k))
2345-
(··-filler (sym p) q r k) s
2345+
(∙∙-filler (sym p) q r k) s
23462346
23472347
J' : ∀ {ℓ₁ ℓ₂} {A : Type ℓ₁}
23482348
(P : (x y : A) → x ≡ y → Type ℓ₂)

src/1Lab/Path/Groupoid.lagda.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -258,14 +258,14 @@ more than a handful of intermediate steps:
258258
259259
∙-cancel'-l : {x y z : A} (p : x ≡ y) (q r : y ≡ z)
260260
→ p ∙ q ≡ p ∙ r → q ≡ r
261-
∙-cancel'-l p q r sq = sym (∙-cancell p q) ·· ap (sym p ∙_) sq ·· ∙-cancell p r
261+
∙-cancel'-l p q r sq = sym (∙-cancell p q) ∙∙ ap (sym p ∙_) sq ∙∙ ∙-cancell p r
262262
263263
∙-cancel'-r : {x y z : A} (p : y ≡ z) (q r : x ≡ y)
264264
→ q ∙ p ≡ r ∙ p → q ≡ r
265265
∙-cancel'-r p q r sq =
266266
sym (∙-cancelr q (sym p))
267-
·· ap (_∙ sym p) sq
268-
·· ∙-cancelr r (sym p)
267+
∙∙ ap (_∙ sym p) sq
268+
∙∙ ∙-cancelr r (sym p)
269269
```
270270

271271
While [[connections]] give us degenerate squares where two adjacent faces are

src/1Lab/Path/Reasoning.lagda.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ module _ (pq≡s : p ∙ q ≡ s) where
9292
∙-pulll : p ∙ q ∙ r ≡ s ∙ r
9393
∙-pulll {r = r} = ∙-assoc p q r ∙ ap (_∙ r) pq≡s
9494
95-
double-left : p ·· q ·· r ≡ s ∙ r
95+
double-left : p ∙∙ q ∙∙ r ≡ s ∙ r
9696
double-left {r = r} = double-composite p q r ∙ ∙-pulll
9797
9898
∙-pullr : (r ∙ p) ∙ q ≡ r ∙ s
@@ -122,28 +122,28 @@ module _ (s≡pq : s ≡ p ∙ q) where
122122
123123
module _ (pq≡rs : p ∙ q ≡ r ∙ s) where
124124
∙-extendl : p ∙ (q ∙ t) ≡ r ∙ (s ∙ t)
125-
∙-extendl {t = t} = ∙-assoc _ _ _ ·· ap (_∙ t) pq≡rs ·· sym (∙-assoc _ _ _)
125+
∙-extendl {t = t} = ∙-assoc _ _ _ ∙∙ ap (_∙ t) pq≡rs ∙∙ sym (∙-assoc _ _ _)
126126
127127
∙-extendr : (t ∙ p) ∙ q ≡ (t ∙ r) ∙ s
128-
∙-extendr {t = t} = sym (∙-assoc _ _ _) ·· ap (t ∙_) pq≡rs ·· ∙-assoc _ _ _
128+
∙-extendr {t = t} = sym (∙-assoc _ _ _) ∙∙ ap (t ∙_) pq≡rs ∙∙ ∙-assoc _ _ _
129129
130-
··-stack : (sym p' ·· (sym p ·· q ·· r) ·· r') ≡ (sym (p ∙ p') ·· q ·· (r ∙ r'))
131-
··-stack = ··-unique' (··-filler _ _ _ ∙₂ ··-filler _ _ _)
130+
∙∙-stack : (sym p' ∙∙ (sym p ∙∙ q ∙∙ r) ∙∙ r') ≡ (sym (p ∙ p') ∙∙ q ∙∙ (r ∙ r'))
131+
∙∙-stack = ∙∙-unique' (∙∙-filler _ _ _ ∙₂ ∙∙-filler _ _ _)
132132
133-
··-chain : (sym p ·· q ·· r) ∙ (sym r ·· q' ·· s) ≡ sym p ·· (q ∙ q') ·· s
134-
··-chain {p = p} {q = q} {r = r} {q' = q'} {s = s} = sym (∙-unique _ square) where
135-
square : Square refl (sym p ·· q ·· r) (sym p ·· (q ∙ q') ·· s) (sym r ·· q' ·· s)
133+
∙∙-chain : (sym p ∙∙ q ∙∙ r) ∙ (sym r ∙∙ q' ∙∙ s) ≡ sym p ∙∙ (q ∙ q') ∙∙ s
134+
∙∙-chain {p = p} {q = q} {r = r} {q' = q'} {s = s} = sym (∙-unique _ square) where
135+
square : Square refl (sym p ∙∙ q ∙∙ r) (sym p ∙∙ (q ∙ q') ∙∙ s) (sym r ∙∙ q' ∙∙ s)
136136
square i j = hcomp (~ j ∨ (j ∧ (i ∨ ~ i))) λ where
137137
k (k = i0) → ∙-filler q q' i j
138138
k (j = i0) → p k
139139
k (j = i1) (i = i0) → r k
140140
k (j = i1) (i = i1) → s k
141141
142-
··-∙-assoc : p ·· q ·· (r ∙ s) ≡ (p ·· q ·· r) ∙ s
143-
··-∙-assoc {p = p} {q = q} {r = r} {s = s} = sym (··-unique' square) where
144-
square : Square (sym p) q ((p ·· q ·· r) ∙ s) (r ∙ s)
142+
∙∙-∙-assoc : p ∙∙ q ∙∙ (r ∙ s) ≡ (p ∙∙ q ∙∙ r) ∙ s
143+
∙∙-∙-assoc {p = p} {q = q} {r = r} {s = s} = sym (∙∙-unique' square) where
144+
square : Square (sym p) q ((p ∙∙ q ∙∙ r) ∙ s) (r ∙ s)
145145
square i j = hcomp (~ i ∨ ~ j ∨ (i ∧ j)) λ where
146-
k (k = i0) → ··-filler p q r i j
146+
k (k = i0) → ∙∙-filler p q r i j
147147
k (i = i0) → q j
148148
k (j = i0) → p (~ i)
149149
k (i = i1) (j = i1) → s k

src/1Lab/Underlying.agda

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -75,11 +75,11 @@ from-is-true prf = subst ⌞_⌟ (sym prf) (hlevel 0 .centre)
7575
-- categories.
7676
record Funlike {ℓ ℓ' ℓ''} (A : Type ℓ) (arg : Type ℓ') (out : arg Type ℓ'') : Type (ℓ ⊔ ℓ' ⊔ ℓ'') where
7777
field
78-
_#_ : A (x : arg) out x
79-
infixl 999 _#_
78+
_·_ : A (x : arg) out x
79+
infixl 999 _·_
8080

81-
open Funlike ⦃ ... ⦄ using (_#_) public
82-
{-# DISPLAY Funlike._#_ _ f x = f # x #-}
81+
open Funlike ⦃ ... ⦄ using (_·_) public
82+
{-# DISPLAY Funlike._·_ _ f x = f · x #-}
8383

8484
-- Sections of the _#_ operator tend to be badly-behaved since they
8585
-- introduce an argument x : ⌞ ?0 ⌟ whose Underlying instance meta
@@ -89,36 +89,36 @@ apply
8989
: {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A Type ℓ'} {F : Type ℓ''}
9090
→ ⦃ _ : Funlike F A B ⦄
9191
F (x : A) B x
92-
apply = _#_
92+
apply = _·_
9393

9494
-- Shortcut for ap (apply ...)
95-
ap#
95+
ap·
9696
: {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A Type ℓ'} {F : Type ℓ''}
9797
→ ⦃ _ : Funlike F A B ⦄
98-
(f : F) {x y : A} (p : x ≡ y) PathP (λ i B (p i)) (f # x) (f # y)
99-
ap# f = ap (apply f)
98+
(f : F) {x y : A} (p : x ≡ y) PathP (λ i B (p i)) (f · x) (f · y)
99+
ap· f = ap (apply f)
100100

101101
-- Generalised happly.
102-
_#ₚ_
102+
_·ₚ_
103103
: {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A Type ℓ'} {F : Type ℓ''}
104104
→ ⦃ _ : Funlike F A B ⦄
105-
{f g : F} f ≡ g (x : A) f # x ≡ g # x
106-
f #ₚ x = ap₂ _#_ f refl
105+
{f g : F} f ≡ g (x : A) f · x ≡ g · x
106+
f ·ₚ x = ap₂ _·_ f refl
107107

108108
instance
109109
Funlike-Π : {ℓ ℓ'} {A : Type ℓ} {B : A Type ℓ'} Funlike ((x : A) B x) A B
110-
Funlike-Π = record { _#_ = id }
110+
Funlike-Π = record { _·_ = id }
111111

112112
Funlike-Homotopy
113113
: {ℓ ℓ'} {A : Type ℓ} {B : A Type ℓ'} {f g : x B x}
114114
Funlike (f ≡ g) A (λ x f x ≡ g x)
115-
Funlike-Homotopy = record { _#_ = happly }
115+
Funlike-Homotopy = record { _·_ = happly }
116116

117117
Funlike-Σ
118118
: {ℓ ℓ' ℓx ℓp} {A : Type ℓ} {B : A Type ℓ'} {X : Type ℓx} {P : X Type ℓp}
119119
⦃ Funlike X A B ⦄
120120
Funlike (Σ X P) A B
121-
Funlike-Σ = record { _#_ = λ (f , _) f #_ }
121+
Funlike-Σ = record { _·_ = λ (f , _) f ·_ }
122122
{-# OVERLAPPABLE Funlike-Σ #-}
123123

124124
-- Generalised "sections" (e.g. of a presheaf) notation.
@@ -127,7 +127,7 @@ _ʻ_
127127
→ ⦃ _ : Funlike F A B ⦄
128128
F (x : A) ⦃ _ : Underlying (B x) ⦄
129129
Type _
130-
F ʻ x = ⌞ F # x ⌟
130+
F ʻ x = ⌞ F · x ⌟
131131

132132
infix 999 _ʻ_
133133

src/1Lab/Univalence/SIP.lagda.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -465,8 +465,8 @@ sym-transport-str :
465465
→ equiv→inverse (α e .snd) t ≡ subst S (sym (ua e)) t
466466
sym-transport-str {S = S} α τ e t =
467467
sym (transport⁻transport (ap S (ua e)) (ae.from t))
468-
·· sym (ap (subst S (sym (ua e))) (τ e (ae.from t)))
469-
·· ap (subst S (sym (ua e))) (ae.ε t)
468+
∙∙ sym (ap (subst S (sym (ua e))) (τ e (ae.from t)))
469+
∙∙ ap (subst S (sym (ua e))) (ae.ε t)
470470
where module ae = Equiv (α e)
471471
```
472472
-->

0 commit comments

Comments
 (0)