@@ -93,7 +93,6 @@ public final class ImageOps {
9393 * channel and then adjusts each component of each pixel to
9494 * {@code (x - mean) * contrast_factor + mean}.
9595 *
96- * @param <T> data type for {@code output} output
9796 * @param images Images to adjust. At least 3-D.
9897 * @param contrastFactor A float multiplier for adjusting contrast.
9998 * @param <T> data type for {@code AdjustContrastv2} output and operands
@@ -112,7 +111,6 @@ public <T extends TNumber> AdjustContrast<T> adjustContrast(Operand<T> images,
112111 * colors are first mapped into HSV. A delta is then applied all the hue values,
113112 * and then remapped back to RGB colorspace.
114113 *
115- * @param <T> data type for {@code output} output
116114 * @param images Images to adjust. At least 3-D.
117115 * @param delta A float delta to add to the hue.
118116 * @param <T> data type for {@code AdjustHue} output and operands
@@ -130,7 +128,6 @@ public <T extends TNumber> AdjustHue<T> adjustHue(Operand<T> images, Operand<TFl
130128 * colors are first mapped into HSV. A scale is then applied all the saturation
131129 * values, and then remapped back to RGB colorspace.
132130 *
133- * @param <T> data type for {@code output} output
134131 * @param images Images to adjust. At least 3-D.
135132 * @param scale A float scale to add to the saturation.
136133 * @param <T> data type for {@code AdjustSaturation} output and operands
@@ -250,7 +247,6 @@ public CropAndResizeGradBoxes cropAndResizeGradBoxes(Operand<TFloat32> grads,
250247 /**
251248 * Computes the gradient of the crop_and_resize op wrt the input image tensor.
252249 *
253- * @param <T> data type for {@code output} output
254250 * @param grads A 4-D tensor of shape {@code [num_boxes, crop_height, crop_width, depth]}.
255251 * @param boxes A 2-D tensor of shape {@code [num_boxes, 4]}. The {@code i}-th row of the tensor
256252 * specifies the coordinates of a box in the {@code box_ind[i]} image and is specified
@@ -357,7 +353,6 @@ public DecodeGif decodeGif(Operand<TString> contents) {
357353 * first frame that does not occupy the entire canvas, it uses the previous
358354 * frame to fill the unoccupied areas.
359355 *
360- * @param <T> data type for {@code image} output
361356 * @param contents 0-D. The encoded image bytes.
362357 * @param options carries optional attribute values
363358 * @return a new instance of DecodeImage, with default output types
@@ -384,7 +379,6 @@ public DecodeImage<TUint8> decodeImage(Operand<TString> contents, DecodeImage.Op
384379 * first frame that does not occupy the entire canvas, it uses the previous
385380 * frame to fill the unoccupied areas.
386381 *
387- * @param <T> data type for {@code image} output
388382 * @param contents 0-D. The encoded image bytes.
389383 * @param dtype The desired DType of the returned Tensor.
390384 * @param options carries optional attribute values
@@ -438,7 +432,6 @@ public DecodeJpeg decodeJpeg(Operand<TString> contents, DecodeJpeg.Options... op
438432 * <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
439433 * is the same, though it is cleaner to use {@code tf.io.decode_image}.
440434 *
441- * @param <T> data type for {@code image} output
442435 * @param contents 0-D. The PNG-encoded image.
443436 * @param options carries optional attribute values
444437 * @return a new instance of DecodePng, with default output types
@@ -463,7 +456,6 @@ public DecodePng<TUint8> decodePng(Operand<TString> contents, DecodePng.Options[
463456 * <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
464457 * is the same, though it is cleaner to use {@code tf.io.decode_image}.
465458 *
466- * @param <T> data type for {@code image} output
467459 * @param contents 0-D. The PNG-encoded image.
468460 * @param dtype The value of the dtype attribute
469461 * @param options carries optional attribute values
@@ -487,7 +479,6 @@ public <T extends TNumber> DecodePng<T> decodePng(Operand<TString> contents, Cla
487479 * the bounding box will be {@code (40, 10)} to {@code (100, 50)} (in (x,y) coordinates).
488480 * <p>Parts of the bounding box may fall outside the image.
489481 *
490- * @param <T> data type for {@code output} output
491482 * @param images 4-D with shape {@code [batch, height, width, depth]}. A batch of images.
492483 * @param boxes 3-D with shape {@code [batch, num_bounding_boxes, 4]} containing bounding
493484 * boxes.
@@ -602,7 +593,6 @@ public ExtractGlimpse extractGlimpse(Operand<TFloat32> input, Operand<TInt32> si
602593 /**
603594 * Extract {@code patches} from {@code images} and put them in the "depth" output dimension.
604595 *
605- * @param <T> data type for {@code patches} output
606596 * @param images 4-D Tensor with shape {@code [batch, in_rows, in_cols, depth]}.
607597 * @param ksizes The size of the sliding window for each dimension of {@code images}.
608598 * @param strides How far the centers of two consecutive patches are in
@@ -626,7 +616,6 @@ public <T extends TType> ExtractImagePatches<T> extractImagePatches(Operand<T> i
626616 * Extract the shape information of a JPEG-encoded image.
627617 * This op only parses the image header, so it is much faster than DecodeJpeg.
628618 *
629- * @param <T> data type for {@code image_shape} output
630619 * @param contents 0-D. The JPEG-encoded image.
631620 * @return a new instance of ExtractJpegShape, with default output types
632621 */
@@ -638,7 +627,6 @@ public ExtractJpegShape<TInt32> extractJpegShape(Operand<TString> contents) {
638627 * Extract the shape information of a JPEG-encoded image.
639628 * This op only parses the image header, so it is much faster than DecodeJpeg.
640629 *
641- * @param <T> data type for {@code image_shape} output
642630 * @param contents 0-D. The JPEG-encoded image.
643631 * @param outputType (Optional) The output type of the operation (int32 or int64).
644632 * Defaults to int32.
@@ -691,7 +679,6 @@ public GenerateBoundingBoxProposals generateBoundingBoxProposals(Operand<TFloat3
691679 * are in {@code [0,1]}.
692680 * <p>See {@code rgb_to_hsv} for a description of the HSV encoding.
693681 *
694- * @param <T> data type for {@code output} output
695682 * @param images 1-D or higher rank. HSV data to convert. Last dimension must be size 3.
696683 * @param <T> data type for {@code HSVToRGB} output and operands
697684 * @return a new instance of HsvToRgb
@@ -708,7 +695,6 @@ public <T extends TNumber> HsvToRgb<T> hsvToRgb(Operand<T> images) {
708695 * {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
709696 * image, the output pixel is set to 0.
710697 *
711- * @param <T> data type for {@code transformed_images} output
712698 * @param images 4-D with shape {@code [batch, height, width, channels]}.
713699 * @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
714700 * projective transformation matrix, with the last entry assumed to be 1. If there
@@ -733,7 +719,6 @@ public <T extends TNumber> ImageProjectiveTransformV2<T> imageProjectiveTransfor
733719 * {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
734720 * image, the output pixel is set to fill_value.
735721 *
736- * @param <T> data type for {@code transformed_images} output
737722 * @param images 4-D with shape {@code [batch, height, width, channels]}.
738723 * @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
739724 * projective transformation matrix, with the last entry assumed to be 1. If there
@@ -794,7 +779,6 @@ public NearestNeighbors nearestNeighbors(Operand<TFloat32> points, Operand<TFloa
794779 * To enable this Soft-NMS mode, set the {@code soft_nms_sigma} parameter to be
795780 * larger than 0.
796781 *
797- * @param <T> data type for {@code selected_scores} output
798782 * @param boxes A 2-D float tensor of shape {@code [num_boxes, 4]}.
799783 * @param scores A 1-D float tensor of shape {@code [num_boxes]} representing a single
800784 * score corresponding to each box (each row of boxes).
@@ -854,7 +838,6 @@ public NonMaxSuppressionWithOverlaps nonMaxSuppressionWithOverlaps(Operand<TFloa
854838 * Resize quantized {@code images} to {@code size} using quantized bilinear interpolation.
855839 * Input images and output images must be quantized types.
856840 *
857- * @param <T> data type for {@code resized_images} output
858841 * @param images 4-D with shape {@code [batch, height, width, channels]}.
859842 * @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
860843 * new size for the images.
@@ -878,7 +861,6 @@ public <T extends TNumber> QuantizedResizeBilinear<T> quantizedResizeBilinear(Op
878861 * rectangle from that location. The random location is picked so the cropped
879862 * area will fit inside the original image.
880863 *
881- * @param <T> data type for {@code output} output
882864 * @param image 3-D of shape {@code [height, width, channels]}.
883865 * @param sizeOutput 1-D of length 2 containing: {@code crop_height}, {@code crop_width}..
884866 * @param options carries optional attribute values
@@ -931,7 +913,6 @@ public ResizeBicubic resizeBicubic(Operand<? extends TNumber> images, Operand<TI
931913 /**
932914 * Computes the gradient of bicubic interpolation.
933915 *
934- * @param <T> data type for {@code output} output
935916 * @param grads 4-D with shape {@code [batch, height, width, channels]}.
936917 * @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
937918 * The image tensor that was resized.
@@ -962,7 +943,6 @@ public ResizeBilinear resizeBilinear(Operand<? extends TNumber> images,
962943 /**
963944 * Computes the gradient of bilinear interpolation.
964945 *
965- * @param <T> data type for {@code output} output
966946 * @param grads 4-D with shape {@code [batch, height, width, channels]}.
967947 * @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
968948 * The image tensor that was resized.
@@ -978,7 +958,6 @@ public <T extends TNumber> ResizeBilinearGrad<T> resizeBilinearGrad(Operand<TFlo
978958 /**
979959 * Resize {@code images} to {@code size} using nearest neighbor interpolation.
980960 *
981- * @param <T> data type for {@code resized_images} output
982961 * @param images 4-D with shape {@code [batch, height, width, channels]}.
983962 * @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
984963 * new size for the images.
@@ -994,7 +973,6 @@ public <T extends TNumber> ResizeNearestNeighbor<T> resizeNearestNeighbor(Operan
994973 /**
995974 * Computes the gradient of nearest neighbor interpolation.
996975 *
997- * @param <T> data type for {@code output} output
998976 * @param grads 4-D with shape {@code [batch, height, width, channels]}.
999977 * @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code orig_height, orig_width}. The
1000978 * original input size.
@@ -1031,7 +1009,6 @@ public <T extends TNumber> ResizeNearestNeighborGrad<T> resizeNearestNeighborGra
10311009 * </blockquote>
10321010 * </blockquote>
10331011 *
1034- * @param <T> data type for {@code output} output
10351012 * @param images 1-D or higher rank. RGB data to convert. Last dimension must be size 3.
10361013 * @param <T> data type for {@code RGBToHSV} output and operands
10371014 * @return a new instance of RgbToHsv
@@ -1076,7 +1053,6 @@ public <T extends TNumber> RgbToHsv<T> rgbToHsv(Operand<T> images) {
10761053 * bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
10771054 * false and no bounding boxes are supplied, an error is raised.
10781055 *
1079- * @param <T> data type for {@code begin} output
10801056 * @param imageSize 1-D, containing {@code [height, width, channels]}.
10811057 * @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
10821058 * associated with the image.
@@ -1113,7 +1089,6 @@ public ScaleAndTranslate scaleAndTranslate(Operand<? extends TNumber> images,
11131089 /**
11141090 * The ScaleAndTranslateGrad operation
11151091 *
1116- * @param <T> data type for {@code output} output
11171092 * @param grads The grads value
11181093 * @param originalImage The originalImage value
11191094 * @param scale The scale value
@@ -1189,7 +1164,6 @@ public <T extends TNumber> ScaleAndTranslateGrad<T> scaleAndTranslateGrad(Operan
11891164 * bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
11901165 * false and no bounding boxes are supplied, an error is raised.
11911166 *
1192- * @param <T> data type for {@code begin} output
11931167 * @param imageSize 1-D, containing {@code [height, width, channels]}.
11941168 * @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
11951169 * associated with the image.
0 commit comments