@@ -93,7 +93,6 @@ public final class ImageOps {
93
93
* channel and then adjusts each component of each pixel to
94
94
* {@code (x - mean) * contrast_factor + mean}.
95
95
*
96
- * @param <T> data type for {@code output} output
97
96
* @param images Images to adjust. At least 3-D.
98
97
* @param contrastFactor A float multiplier for adjusting contrast.
99
98
* @param <T> data type for {@code AdjustContrastv2} output and operands
@@ -112,7 +111,6 @@ public <T extends TNumber> AdjustContrast<T> adjustContrast(Operand<T> images,
112
111
* colors are first mapped into HSV. A delta is then applied all the hue values,
113
112
* and then remapped back to RGB colorspace.
114
113
*
115
- * @param <T> data type for {@code output} output
116
114
* @param images Images to adjust. At least 3-D.
117
115
* @param delta A float delta to add to the hue.
118
116
* @param <T> data type for {@code AdjustHue} output and operands
@@ -130,7 +128,6 @@ public <T extends TNumber> AdjustHue<T> adjustHue(Operand<T> images, Operand<TFl
130
128
* colors are first mapped into HSV. A scale is then applied all the saturation
131
129
* values, and then remapped back to RGB colorspace.
132
130
*
133
- * @param <T> data type for {@code output} output
134
131
* @param images Images to adjust. At least 3-D.
135
132
* @param scale A float scale to add to the saturation.
136
133
* @param <T> data type for {@code AdjustSaturation} output and operands
@@ -250,7 +247,6 @@ public CropAndResizeGradBoxes cropAndResizeGradBoxes(Operand<TFloat32> grads,
250
247
/**
251
248
* Computes the gradient of the crop_and_resize op wrt the input image tensor.
252
249
*
253
- * @param <T> data type for {@code output} output
254
250
* @param grads A 4-D tensor of shape {@code [num_boxes, crop_height, crop_width, depth]}.
255
251
* @param boxes A 2-D tensor of shape {@code [num_boxes, 4]}. The {@code i}-th row of the tensor
256
252
* specifies the coordinates of a box in the {@code box_ind[i]} image and is specified
@@ -357,7 +353,6 @@ public DecodeGif decodeGif(Operand<TString> contents) {
357
353
* first frame that does not occupy the entire canvas, it uses the previous
358
354
* frame to fill the unoccupied areas.
359
355
*
360
- * @param <T> data type for {@code image} output
361
356
* @param contents 0-D. The encoded image bytes.
362
357
* @param options carries optional attribute values
363
358
* @return a new instance of DecodeImage, with default output types
@@ -384,7 +379,6 @@ public DecodeImage<TUint8> decodeImage(Operand<TString> contents, DecodeImage.Op
384
379
* first frame that does not occupy the entire canvas, it uses the previous
385
380
* frame to fill the unoccupied areas.
386
381
*
387
- * @param <T> data type for {@code image} output
388
382
* @param contents 0-D. The encoded image bytes.
389
383
* @param dtype The desired DType of the returned Tensor.
390
384
* @param options carries optional attribute values
@@ -438,7 +432,6 @@ public DecodeJpeg decodeJpeg(Operand<TString> contents, DecodeJpeg.Options... op
438
432
* <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
439
433
* is the same, though it is cleaner to use {@code tf.io.decode_image}.
440
434
*
441
- * @param <T> data type for {@code image} output
442
435
* @param contents 0-D. The PNG-encoded image.
443
436
* @param options carries optional attribute values
444
437
* @return a new instance of DecodePng, with default output types
@@ -463,7 +456,6 @@ public DecodePng<TUint8> decodePng(Operand<TString> contents, DecodePng.Options[
463
456
* <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
464
457
* is the same, though it is cleaner to use {@code tf.io.decode_image}.
465
458
*
466
- * @param <T> data type for {@code image} output
467
459
* @param contents 0-D. The PNG-encoded image.
468
460
* @param dtype The value of the dtype attribute
469
461
* @param options carries optional attribute values
@@ -487,7 +479,6 @@ public <T extends TNumber> DecodePng<T> decodePng(Operand<TString> contents, Cla
487
479
* the bounding box will be {@code (40, 10)} to {@code (100, 50)} (in (x,y) coordinates).
488
480
* <p>Parts of the bounding box may fall outside the image.
489
481
*
490
- * @param <T> data type for {@code output} output
491
482
* @param images 4-D with shape {@code [batch, height, width, depth]}. A batch of images.
492
483
* @param boxes 3-D with shape {@code [batch, num_bounding_boxes, 4]} containing bounding
493
484
* boxes.
@@ -602,7 +593,6 @@ public ExtractGlimpse extractGlimpse(Operand<TFloat32> input, Operand<TInt32> si
602
593
/**
603
594
* Extract {@code patches} from {@code images} and put them in the "depth" output dimension.
604
595
*
605
- * @param <T> data type for {@code patches} output
606
596
* @param images 4-D Tensor with shape {@code [batch, in_rows, in_cols, depth]}.
607
597
* @param ksizes The size of the sliding window for each dimension of {@code images}.
608
598
* @param strides How far the centers of two consecutive patches are in
@@ -626,7 +616,6 @@ public <T extends TType> ExtractImagePatches<T> extractImagePatches(Operand<T> i
626
616
* Extract the shape information of a JPEG-encoded image.
627
617
* This op only parses the image header, so it is much faster than DecodeJpeg.
628
618
*
629
- * @param <T> data type for {@code image_shape} output
630
619
* @param contents 0-D. The JPEG-encoded image.
631
620
* @return a new instance of ExtractJpegShape, with default output types
632
621
*/
@@ -638,7 +627,6 @@ public ExtractJpegShape<TInt32> extractJpegShape(Operand<TString> contents) {
638
627
* Extract the shape information of a JPEG-encoded image.
639
628
* This op only parses the image header, so it is much faster than DecodeJpeg.
640
629
*
641
- * @param <T> data type for {@code image_shape} output
642
630
* @param contents 0-D. The JPEG-encoded image.
643
631
* @param outputType (Optional) The output type of the operation (int32 or int64).
644
632
* Defaults to int32.
@@ -691,7 +679,6 @@ public GenerateBoundingBoxProposals generateBoundingBoxProposals(Operand<TFloat3
691
679
* are in {@code [0,1]}.
692
680
* <p>See {@code rgb_to_hsv} for a description of the HSV encoding.
693
681
*
694
- * @param <T> data type for {@code output} output
695
682
* @param images 1-D or higher rank. HSV data to convert. Last dimension must be size 3.
696
683
* @param <T> data type for {@code HSVToRGB} output and operands
697
684
* @return a new instance of HsvToRgb
@@ -708,7 +695,6 @@ public <T extends TNumber> HsvToRgb<T> hsvToRgb(Operand<T> images) {
708
695
* {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
709
696
* image, the output pixel is set to 0.
710
697
*
711
- * @param <T> data type for {@code transformed_images} output
712
698
* @param images 4-D with shape {@code [batch, height, width, channels]}.
713
699
* @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
714
700
* projective transformation matrix, with the last entry assumed to be 1. If there
@@ -733,7 +719,6 @@ public <T extends TNumber> ImageProjectiveTransformV2<T> imageProjectiveTransfor
733
719
* {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
734
720
* image, the output pixel is set to fill_value.
735
721
*
736
- * @param <T> data type for {@code transformed_images} output
737
722
* @param images 4-D with shape {@code [batch, height, width, channels]}.
738
723
* @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
739
724
* projective transformation matrix, with the last entry assumed to be 1. If there
@@ -794,7 +779,6 @@ public NearestNeighbors nearestNeighbors(Operand<TFloat32> points, Operand<TFloa
794
779
* To enable this Soft-NMS mode, set the {@code soft_nms_sigma} parameter to be
795
780
* larger than 0.
796
781
*
797
- * @param <T> data type for {@code selected_scores} output
798
782
* @param boxes A 2-D float tensor of shape {@code [num_boxes, 4]}.
799
783
* @param scores A 1-D float tensor of shape {@code [num_boxes]} representing a single
800
784
* score corresponding to each box (each row of boxes).
@@ -854,7 +838,6 @@ public NonMaxSuppressionWithOverlaps nonMaxSuppressionWithOverlaps(Operand<TFloa
854
838
* Resize quantized {@code images} to {@code size} using quantized bilinear interpolation.
855
839
* Input images and output images must be quantized types.
856
840
*
857
- * @param <T> data type for {@code resized_images} output
858
841
* @param images 4-D with shape {@code [batch, height, width, channels]}.
859
842
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
860
843
* new size for the images.
@@ -878,7 +861,6 @@ public <T extends TNumber> QuantizedResizeBilinear<T> quantizedResizeBilinear(Op
878
861
* rectangle from that location. The random location is picked so the cropped
879
862
* area will fit inside the original image.
880
863
*
881
- * @param <T> data type for {@code output} output
882
864
* @param image 3-D of shape {@code [height, width, channels]}.
883
865
* @param sizeOutput 1-D of length 2 containing: {@code crop_height}, {@code crop_width}..
884
866
* @param options carries optional attribute values
@@ -931,7 +913,6 @@ public ResizeBicubic resizeBicubic(Operand<? extends TNumber> images, Operand<TI
931
913
/**
932
914
* Computes the gradient of bicubic interpolation.
933
915
*
934
- * @param <T> data type for {@code output} output
935
916
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
936
917
* @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
937
918
* The image tensor that was resized.
@@ -962,7 +943,6 @@ public ResizeBilinear resizeBilinear(Operand<? extends TNumber> images,
962
943
/**
963
944
* Computes the gradient of bilinear interpolation.
964
945
*
965
- * @param <T> data type for {@code output} output
966
946
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
967
947
* @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
968
948
* The image tensor that was resized.
@@ -978,7 +958,6 @@ public <T extends TNumber> ResizeBilinearGrad<T> resizeBilinearGrad(Operand<TFlo
978
958
/**
979
959
* Resize {@code images} to {@code size} using nearest neighbor interpolation.
980
960
*
981
- * @param <T> data type for {@code resized_images} output
982
961
* @param images 4-D with shape {@code [batch, height, width, channels]}.
983
962
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
984
963
* new size for the images.
@@ -994,7 +973,6 @@ public <T extends TNumber> ResizeNearestNeighbor<T> resizeNearestNeighbor(Operan
994
973
/**
995
974
* Computes the gradient of nearest neighbor interpolation.
996
975
*
997
- * @param <T> data type for {@code output} output
998
976
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
999
977
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code orig_height, orig_width}. The
1000
978
* original input size.
@@ -1031,7 +1009,6 @@ public <T extends TNumber> ResizeNearestNeighborGrad<T> resizeNearestNeighborGra
1031
1009
* </blockquote>
1032
1010
* </blockquote>
1033
1011
*
1034
- * @param <T> data type for {@code output} output
1035
1012
* @param images 1-D or higher rank. RGB data to convert. Last dimension must be size 3.
1036
1013
* @param <T> data type for {@code RGBToHSV} output and operands
1037
1014
* @return a new instance of RgbToHsv
@@ -1076,7 +1053,6 @@ public <T extends TNumber> RgbToHsv<T> rgbToHsv(Operand<T> images) {
1076
1053
* bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
1077
1054
* false and no bounding boxes are supplied, an error is raised.
1078
1055
*
1079
- * @param <T> data type for {@code begin} output
1080
1056
* @param imageSize 1-D, containing {@code [height, width, channels]}.
1081
1057
* @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
1082
1058
* associated with the image.
@@ -1113,7 +1089,6 @@ public ScaleAndTranslate scaleAndTranslate(Operand<? extends TNumber> images,
1113
1089
/**
1114
1090
* The ScaleAndTranslateGrad operation
1115
1091
*
1116
- * @param <T> data type for {@code output} output
1117
1092
* @param grads The grads value
1118
1093
* @param originalImage The originalImage value
1119
1094
* @param scale The scale value
@@ -1189,7 +1164,6 @@ public <T extends TNumber> ScaleAndTranslateGrad<T> scaleAndTranslateGrad(Operan
1189
1164
* bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
1190
1165
* false and no bounding boxes are supplied, an error is raised.
1191
1166
*
1192
- * @param <T> data type for {@code begin} output
1193
1167
* @param imageSize 1-D, containing {@code [height, width, channels]}.
1194
1168
* @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
1195
1169
* associated with the image.
0 commit comments