Skip to content

Commit 8a544c7

Browse files
authored
Releasing 1.0.0
(with documentation fixes)
1 parent bdcec19 commit 8a544c7

File tree

673 files changed

+37
-2082
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

673 files changed

+37
-2082
lines changed

tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java

-6
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,6 @@ public final class BitwiseOps {
6161
* tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE
6262
* </pre>
6363
*
64-
* @param <T> data type for {@code z} output
6564
* @param x The x value
6665
* @param y The y value
6766
* @param <T> data type for {@code BitwiseAnd} output and operands
@@ -91,7 +90,6 @@ public <T extends TNumber> BitwiseAnd<T> bitwiseAnd(Operand<T> x, Operand<T> y)
9190
* tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE
9291
* </pre>
9392
*
94-
* @param <T> data type for {@code z} output
9593
* @param x The x value
9694
* @param y The y value
9795
* @param <T> data type for {@code BitwiseOr} output and operands
@@ -121,7 +119,6 @@ public <T extends TNumber> BitwiseOr<T> bitwiseOr(Operand<T> x, Operand<T> y) {
121119
* tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE
122120
* </pre>
123121
*
124-
* @param <T> data type for {@code z} output
125122
* @param x The x value
126123
* @param y The y value
127124
* @param <T> data type for {@code BitwiseXor} output and operands
@@ -172,7 +169,6 @@ public <T extends TNumber> BitwiseXor<T> bitwiseXor(Operand<T> x, Operand<T> y)
172169
* tf.assert_equal(tf.cast(inverted, tf.float32), tf.cast(expected, tf.float32))
173170
* </pre>
174171
*
175-
* @param <T> data type for {@code y} output
176172
* @param x The x value
177173
* @param <T> data type for {@code Invert} output and operands
178174
* @return a new instance of Invert
@@ -212,7 +208,6 @@ public <T extends TNumber> Invert<T> invert(Operand<T> x) {
212208
* # &lt;tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)&gt;
213209
* </pre>
214210
*
215-
* @param <T> data type for {@code z} output
216211
* @param x The x value
217212
* @param y The y value
218213
* @param <T> data type for {@code LeftShift} output and operands
@@ -255,7 +250,6 @@ public <T extends TNumber> LeftShift<T> leftShift(Operand<T> x, Operand<T> y) {
255250
* # &lt;tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)&gt;
256251
* </pre>
257252
*
258-
* @param <T> data type for {@code z} output
259253
* @param x The x value
260254
* @param y The y value
261255
* @param <T> data type for {@code RightShift} output and operands

tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/CollectiveOps.java

-7
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,6 @@ public final class CollectiveOps {
4949
/**
5050
* Mutually exchanges multiple tensors of identical type and shape.
5151
*
52-
* @param <T> data type for {@code data} output
5352
* @param input The input value
5453
* @param communicator The communicator value
5554
* @param groupAssignment The groupAssignment value
@@ -79,7 +78,6 @@ public CollectiveAssignGroup collectiveAssignGroup(Operand<TInt32> groupAssignme
7978
/**
8079
* Receives a tensor value broadcast from another device.
8180
*
82-
* @param <U> data type for {@code data} output
8381
* @param groupSize The groupSize value
8482
* @param groupKey The groupKey value
8583
* @param instanceKey The instanceKey value
@@ -98,7 +96,6 @@ public <U extends TType> CollectiveBcastRecv<U> collectiveBcastRecv(Operand<TInt
9896
/**
9997
* Broadcasts a tensor value to one or more other devices.
10098
*
101-
* @param <T> data type for {@code data} output
10299
* @param input The input value
103100
* @param groupSize The groupSize value
104101
* @param groupKey The groupKey value
@@ -119,7 +116,6 @@ public <T extends TType> CollectiveBcastSend<T> collectiveBcastSend(Operand<T> i
119116
* collective ops. In this case, keys that are unique at runtime
120117
* (e.g. {@code instance_key}) should be used to distinguish collective groups.
121118
*
122-
* @param <T> data type for {@code data} output
123119
* @param input The input value
124120
* @param groupSize The groupSize value
125121
* @param groupKey The groupKey value
@@ -157,7 +153,6 @@ public CollectiveInitializeCommunicator collectiveInitializeCommunicator(Operand
157153
* source_target_pairs={@code [[0,1],[1,2],[2,3],[3,0]]} gets the outputs:
158154
* {@code [D, A, B, C]}.
159155
*
160-
* @param <T> data type for {@code output} output
161156
* @param input The local input to be permuted. Currently only supports float and
162157
* bfloat16.
163158
* @param sourceTargetPairs A tensor with shape [num_pairs, 2].
@@ -172,7 +167,6 @@ public <T extends TType> CollectivePermute<T> collectivePermute(Operand<T> input
172167
/**
173168
* Mutually reduces multiple tensors of identical type and shape.
174169
*
175-
* @param <T> data type for {@code data} output
176170
* @param input The input value
177171
* @param communicator The communicator value
178172
* @param groupAssignment The groupAssignment value
@@ -193,7 +187,6 @@ public <T extends TNumber> CollectiveReduce<T> collectiveReduce(Operand<T> input
193187
* collective ops. In this case, keys that are unique at runtime
194188
* (e.g. {@code instance_key}) should be used to distinguish collective groups.
195189
*
196-
* @param <T> data type for {@code data} output
197190
* @param input The input value
198191
* @param groupSize The groupSize value
199192
* @param groupKey The groupKey value

tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java

-1
Original file line numberDiff line numberDiff line change
@@ -987,7 +987,6 @@ public LatencyStatsDataset latencyStatsDataset(Operand<? extends TType> inputDat
987987
/**
988988
* Computes rectified linear gradients for a LeakyRelu operation.
989989
*
990-
* @param <T> data type for {@code backprops} output
991990
* @param gradients The backpropagated gradients to the corresponding LeakyRelu operation.
992991
* @param features The features passed as input to the corresponding LeakyRelu operation,
993992
* OR the outputs of that operation (both work equivalently).

tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java

-1
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,6 @@ public final class DebuggingOps {
4343
* tensor. Unlike CheckNumerics (V1), CheckNumericsV2 distinguishes -Inf and +Inf
4444
* in the errors it throws.
4545
*
46-
* @param <T> data type for {@code output} output
4746
* @param tensor The tensor value
4847
* @param message Prefix of the error message.
4948
* @param <T> data type for {@code CheckNumericsV2} output and operands

tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DistributeOps.java

-3
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,6 @@ public final class DistributeOps {
5252
* num_devices: The number of devices participating in this reduction.
5353
* shared_name: Identifier that shared between ops of the same reduction.
5454
*
55-
* @param <T> data type for {@code data} output
5655
* @param input The input value
5756
* @param reduction The value of the reduction attribute
5857
* @param numDevices The value of the numDevices attribute
@@ -74,7 +73,6 @@ public <T extends TNumber> NcclAllReduce<T> ncclAllReduce(Operand<T> input, Stri
7473
* output: The same as input.
7574
* shape: The shape of the input tensor.
7675
*
77-
* @param <T> data type for {@code output} output
7876
* @param input The input value
7977
* @param shape The value of the shape attribute
8078
* @param <T> data type for {@code NcclBroadcast} output and operands
@@ -93,7 +91,6 @@ public <T extends TNumber> NcclBroadcast<T> ncclBroadcast(Operand<T> input, Shap
9391
* data: the value of the reduction across all {@code num_devices} devices.
9492
* reduction: the reduction operation to perform.
9593
*
96-
* @param <T> data type for {@code data} output
9794
* @param input The input value
9895
* @param reduction The value of the reduction attribute
9996
* @param <T> data type for {@code NcclReduce} output and operands

tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java

-2
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,6 @@ public AsString asString(Operand<? extends TType> input, AsString.Options... opt
6969
/**
7070
* Cast x of type SrcT to y of DstT.
7171
*
72-
* @param <U> data type for {@code y} output
7372
* @param x The x value
7473
* @param DstT The value of the DstT attribute
7574
* @param options carries optional attribute values
@@ -95,7 +94,6 @@ public <U extends TType> Cast<U> cast(Operand<? extends TType> x, Class<U> DstT,
9594
* tf.complex(real, imag) ==&gt; [[2.25 + 4.75j], [3.25 + 5.75j]]
9695
* </pre>
9796
*
98-
* @param <U> data type for {@code out} output
9997
* @param real The real value
10098
* @param imag The imag value
10199
* @param Tout The value of the Tout attribute

tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java

-26
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,6 @@ public final class ImageOps {
9393
* channel and then adjusts each component of each pixel to
9494
* {@code (x - mean) * contrast_factor + mean}.
9595
*
96-
* @param <T> data type for {@code output} output
9796
* @param images Images to adjust. At least 3-D.
9897
* @param contrastFactor A float multiplier for adjusting contrast.
9998
* @param <T> data type for {@code AdjustContrastv2} output and operands
@@ -112,7 +111,6 @@ public <T extends TNumber> AdjustContrast<T> adjustContrast(Operand<T> images,
112111
* colors are first mapped into HSV. A delta is then applied all the hue values,
113112
* and then remapped back to RGB colorspace.
114113
*
115-
* @param <T> data type for {@code output} output
116114
* @param images Images to adjust. At least 3-D.
117115
* @param delta A float delta to add to the hue.
118116
* @param <T> data type for {@code AdjustHue} output and operands
@@ -130,7 +128,6 @@ public <T extends TNumber> AdjustHue<T> adjustHue(Operand<T> images, Operand<TFl
130128
* colors are first mapped into HSV. A scale is then applied all the saturation
131129
* values, and then remapped back to RGB colorspace.
132130
*
133-
* @param <T> data type for {@code output} output
134131
* @param images Images to adjust. At least 3-D.
135132
* @param scale A float scale to add to the saturation.
136133
* @param <T> data type for {@code AdjustSaturation} output and operands
@@ -250,7 +247,6 @@ public CropAndResizeGradBoxes cropAndResizeGradBoxes(Operand<TFloat32> grads,
250247
/**
251248
* Computes the gradient of the crop_and_resize op wrt the input image tensor.
252249
*
253-
* @param <T> data type for {@code output} output
254250
* @param grads A 4-D tensor of shape {@code [num_boxes, crop_height, crop_width, depth]}.
255251
* @param boxes A 2-D tensor of shape {@code [num_boxes, 4]}. The {@code i}-th row of the tensor
256252
* specifies the coordinates of a box in the {@code box_ind[i]} image and is specified
@@ -357,7 +353,6 @@ public DecodeGif decodeGif(Operand<TString> contents) {
357353
* first frame that does not occupy the entire canvas, it uses the previous
358354
* frame to fill the unoccupied areas.
359355
*
360-
* @param <T> data type for {@code image} output
361356
* @param contents 0-D. The encoded image bytes.
362357
* @param options carries optional attribute values
363358
* @return a new instance of DecodeImage, with default output types
@@ -384,7 +379,6 @@ public DecodeImage<TUint8> decodeImage(Operand<TString> contents, DecodeImage.Op
384379
* first frame that does not occupy the entire canvas, it uses the previous
385380
* frame to fill the unoccupied areas.
386381
*
387-
* @param <T> data type for {@code image} output
388382
* @param contents 0-D. The encoded image bytes.
389383
* @param dtype The desired DType of the returned Tensor.
390384
* @param options carries optional attribute values
@@ -438,7 +432,6 @@ public DecodeJpeg decodeJpeg(Operand<TString> contents, DecodeJpeg.Options... op
438432
* <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
439433
* is the same, though it is cleaner to use {@code tf.io.decode_image}.
440434
*
441-
* @param <T> data type for {@code image} output
442435
* @param contents 0-D. The PNG-encoded image.
443436
* @param options carries optional attribute values
444437
* @return a new instance of DecodePng, with default output types
@@ -463,7 +456,6 @@ public DecodePng<TUint8> decodePng(Operand<TString> contents, DecodePng.Options[
463456
* <p>This op also supports decoding JPEGs and non-animated GIFs since the interface
464457
* is the same, though it is cleaner to use {@code tf.io.decode_image}.
465458
*
466-
* @param <T> data type for {@code image} output
467459
* @param contents 0-D. The PNG-encoded image.
468460
* @param dtype The value of the dtype attribute
469461
* @param options carries optional attribute values
@@ -487,7 +479,6 @@ public <T extends TNumber> DecodePng<T> decodePng(Operand<TString> contents, Cla
487479
* the bounding box will be {@code (40, 10)} to {@code (100, 50)} (in (x,y) coordinates).
488480
* <p>Parts of the bounding box may fall outside the image.
489481
*
490-
* @param <T> data type for {@code output} output
491482
* @param images 4-D with shape {@code [batch, height, width, depth]}. A batch of images.
492483
* @param boxes 3-D with shape {@code [batch, num_bounding_boxes, 4]} containing bounding
493484
* boxes.
@@ -602,7 +593,6 @@ public ExtractGlimpse extractGlimpse(Operand<TFloat32> input, Operand<TInt32> si
602593
/**
603594
* Extract {@code patches} from {@code images} and put them in the &quot;depth&quot; output dimension.
604595
*
605-
* @param <T> data type for {@code patches} output
606596
* @param images 4-D Tensor with shape {@code [batch, in_rows, in_cols, depth]}.
607597
* @param ksizes The size of the sliding window for each dimension of {@code images}.
608598
* @param strides How far the centers of two consecutive patches are in
@@ -626,7 +616,6 @@ public <T extends TType> ExtractImagePatches<T> extractImagePatches(Operand<T> i
626616
* Extract the shape information of a JPEG-encoded image.
627617
* This op only parses the image header, so it is much faster than DecodeJpeg.
628618
*
629-
* @param <T> data type for {@code image_shape} output
630619
* @param contents 0-D. The JPEG-encoded image.
631620
* @return a new instance of ExtractJpegShape, with default output types
632621
*/
@@ -638,7 +627,6 @@ public ExtractJpegShape<TInt32> extractJpegShape(Operand<TString> contents) {
638627
* Extract the shape information of a JPEG-encoded image.
639628
* This op only parses the image header, so it is much faster than DecodeJpeg.
640629
*
641-
* @param <T> data type for {@code image_shape} output
642630
* @param contents 0-D. The JPEG-encoded image.
643631
* @param outputType (Optional) The output type of the operation (int32 or int64).
644632
* Defaults to int32.
@@ -691,7 +679,6 @@ public GenerateBoundingBoxProposals generateBoundingBoxProposals(Operand<TFloat3
691679
* are in {@code [0,1]}.
692680
* <p>See {@code rgb_to_hsv} for a description of the HSV encoding.
693681
*
694-
* @param <T> data type for {@code output} output
695682
* @param images 1-D or higher rank. HSV data to convert. Last dimension must be size 3.
696683
* @param <T> data type for {@code HSVToRGB} output and operands
697684
* @return a new instance of HsvToRgb
@@ -708,7 +695,6 @@ public <T extends TNumber> HsvToRgb<T> hsvToRgb(Operand<T> images) {
708695
* {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
709696
* image, the output pixel is set to 0.
710697
*
711-
* @param <T> data type for {@code transformed_images} output
712698
* @param images 4-D with shape {@code [batch, height, width, channels]}.
713699
* @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
714700
* projective transformation matrix, with the last entry assumed to be 1. If there
@@ -733,7 +719,6 @@ public <T extends TNumber> ImageProjectiveTransformV2<T> imageProjectiveTransfor
733719
* {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input
734720
* image, the output pixel is set to fill_value.
735721
*
736-
* @param <T> data type for {@code transformed_images} output
737722
* @param images 4-D with shape {@code [batch, height, width, channels]}.
738723
* @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3
739724
* projective transformation matrix, with the last entry assumed to be 1. If there
@@ -794,7 +779,6 @@ public NearestNeighbors nearestNeighbors(Operand<TFloat32> points, Operand<TFloa
794779
* To enable this Soft-NMS mode, set the {@code soft_nms_sigma} parameter to be
795780
* larger than 0.
796781
*
797-
* @param <T> data type for {@code selected_scores} output
798782
* @param boxes A 2-D float tensor of shape {@code [num_boxes, 4]}.
799783
* @param scores A 1-D float tensor of shape {@code [num_boxes]} representing a single
800784
* score corresponding to each box (each row of boxes).
@@ -854,7 +838,6 @@ public NonMaxSuppressionWithOverlaps nonMaxSuppressionWithOverlaps(Operand<TFloa
854838
* Resize quantized {@code images} to {@code size} using quantized bilinear interpolation.
855839
* Input images and output images must be quantized types.
856840
*
857-
* @param <T> data type for {@code resized_images} output
858841
* @param images 4-D with shape {@code [batch, height, width, channels]}.
859842
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
860843
* new size for the images.
@@ -878,7 +861,6 @@ public <T extends TNumber> QuantizedResizeBilinear<T> quantizedResizeBilinear(Op
878861
* rectangle from that location. The random location is picked so the cropped
879862
* area will fit inside the original image.
880863
*
881-
* @param <T> data type for {@code output} output
882864
* @param image 3-D of shape {@code [height, width, channels]}.
883865
* @param sizeOutput 1-D of length 2 containing: {@code crop_height}, {@code crop_width}..
884866
* @param options carries optional attribute values
@@ -931,7 +913,6 @@ public ResizeBicubic resizeBicubic(Operand<? extends TNumber> images, Operand<TI
931913
/**
932914
* Computes the gradient of bicubic interpolation.
933915
*
934-
* @param <T> data type for {@code output} output
935916
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
936917
* @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
937918
* The image tensor that was resized.
@@ -962,7 +943,6 @@ public ResizeBilinear resizeBilinear(Operand<? extends TNumber> images,
962943
/**
963944
* Computes the gradient of bilinear interpolation.
964945
*
965-
* @param <T> data type for {@code output} output
966946
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
967947
* @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]},
968948
* The image tensor that was resized.
@@ -978,7 +958,6 @@ public <T extends TNumber> ResizeBilinearGrad<T> resizeBilinearGrad(Operand<TFlo
978958
/**
979959
* Resize {@code images} to {@code size} using nearest neighbor interpolation.
980960
*
981-
* @param <T> data type for {@code resized_images} output
982961
* @param images 4-D with shape {@code [batch, height, width, channels]}.
983962
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The
984963
* new size for the images.
@@ -994,7 +973,6 @@ public <T extends TNumber> ResizeNearestNeighbor<T> resizeNearestNeighbor(Operan
994973
/**
995974
* Computes the gradient of nearest neighbor interpolation.
996975
*
997-
* @param <T> data type for {@code output} output
998976
* @param grads 4-D with shape {@code [batch, height, width, channels]}.
999977
* @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code orig_height, orig_width}. The
1000978
* original input size.
@@ -1031,7 +1009,6 @@ public <T extends TNumber> ResizeNearestNeighborGrad<T> resizeNearestNeighborGra
10311009
* </blockquote>
10321010
* </blockquote>
10331011
*
1034-
* @param <T> data type for {@code output} output
10351012
* @param images 1-D or higher rank. RGB data to convert. Last dimension must be size 3.
10361013
* @param <T> data type for {@code RGBToHSV} output and operands
10371014
* @return a new instance of RgbToHsv
@@ -1076,7 +1053,6 @@ public <T extends TNumber> RgbToHsv<T> rgbToHsv(Operand<T> images) {
10761053
* bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
10771054
* false and no bounding boxes are supplied, an error is raised.
10781055
*
1079-
* @param <T> data type for {@code begin} output
10801056
* @param imageSize 1-D, containing {@code [height, width, channels]}.
10811057
* @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
10821058
* associated with the image.
@@ -1113,7 +1089,6 @@ public ScaleAndTranslate scaleAndTranslate(Operand<? extends TNumber> images,
11131089
/**
11141090
* The ScaleAndTranslateGrad operation
11151091
*
1116-
* @param <T> data type for {@code output} output
11171092
* @param grads The grads value
11181093
* @param originalImage The originalImage value
11191094
* @param scale The scale value
@@ -1189,7 +1164,6 @@ public <T extends TNumber> ScaleAndTranslateGrad<T> scaleAndTranslateGrad(Operan
11891164
* bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is
11901165
* false and no bounding boxes are supplied, an error is raised.
11911166
*
1192-
* @param <T> data type for {@code begin} output
11931167
* @param imageSize 1-D, containing {@code [height, width, channels]}.
11941168
* @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes
11951169
* associated with the image.

0 commit comments

Comments
 (0)