-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_ddp.py
284 lines (251 loc) · 12 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import argparse
import shutil
import torch.distributed as dist
import torch.utils.tensorboard
import yaml
from easydict import EasyDict
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.nn.utils import clip_grad_norm_
from torch_geometric.data import DataLoader
from tqdm.auto import tqdm
from configs.datasets_config import get_dataset_info
from models.epsnet import get_model
from qm9.utils import prepare_context, compute_mean_mad
from utils.common import get_optimizer, get_scheduler
from utils.datasets import QM93D, Geom
from utils.misc import *
from utils.transforms import *
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='qm9',
help='qm9, geom')
parser.add_argument('--config', type=str)
parser.add_argument('--cuda', type=bool, default=True)
parser.add_argument('--use_mixed_precision', type=bool, default=False)
parser.add_argument('--dp', type=bool, default=True)
parser.add_argument('--resume_iter', type=int, default=None)
parser.add_argument('--logdir', type=str, default='./logs')
parser.add_argument("--context", nargs='+', default=[],
help='arguments : homo | lumo | alpha | gap | mu | Cv')
def train(it):
model.train()
train_sampler.set_epoch(it)
sum_loss, sum_n = 0, 0
sum_loss_pos_global, sum_loss_pos_local = 0, 0
sum_loss_node_global, sum_loss_node_local = 0, 0
with tqdm(total=len(train_loader), desc='Training') as pbar:
for batch in train_loader:
optimizer_global.zero_grad()
optimizer_local.zero_grad()
batch = batch.to(local_rank)
if len(args.context) > 0:
context = prepare_context(args.context, batch, property_norms)
else:
context = None
loss_vae_kl = 0.00
loss = model(
batch,
context=context,
return_unreduced_loss=True
)
if config.model.vae_context:
loss, loss_pos_global, loss_pos_local, loss_node_global, loss_node_local, loss_vae_kl = loss
loss_vae_kl = loss_vae_kl.mean().item()
else:
loss, loss_pos_global, loss_pos_local, loss_node_global, loss_node_local = loss
loss = loss.mean()
loss.backward()
orig_grad_norm = clip_grad_norm_(model.parameters(), config.train.max_grad_norm)
optimizer_global.step()
optimizer_local.step()
sum_loss += loss.item()
sum_n += 1
sum_loss += loss.mean().item()
sum_loss_pos_global += loss_pos_global.mean().item()
sum_loss_node_global += loss_node_global.mean().item()
sum_loss_pos_local += loss_pos_local.mean().item()
sum_loss_node_local += loss_node_local.mean().item()
pbar.set_postfix({'loss': '%.2f' % (loss.item())})
pbar.update(1)
avg_loss = sum_loss / sum_n
avg_loss_pos_global = sum_loss_pos_global / sum_n
avg_loss_node_global = sum_loss_node_global / sum_n
avg_loss_pos_local = sum_loss_pos_local / sum_n
avg_loss_node_local = sum_loss_node_local / sum_n
if dist.get_rank() == 0:
logger.info(
f'[Train] Iter {it:05d} | Loss {loss.item():,2f} | '
f'Loss(pos_Global) {avg_loss_pos_global:.2f} | Loss(pos_Local) {avg_loss_pos_local:.2f} | '
f'Loss(node_global) {avg_loss_node_global:.2f} | Loss(node_local) {avg_loss_node_local:.2f} | '
f'Loss(vae_KL) {loss_vae_kl:.2f} |Grad {orig_grad_norm:.2f} | '
f'LR {optimizer_global.param_groups[0]["lr"]:.6f}'
)
writer.add_scalar('train/loss', avg_loss, it)
writer.add_scalar('train/loss_pos_global', avg_loss_pos_global, it)
writer.add_scalar('train/loss_node_global', avg_loss_node_global, it)
writer.add_scalar('train/loss_pos_local', avg_loss_pos_local, it)
writer.add_scalar('train/loss_node_local', avg_loss_node_local, it)
writer.add_scalar('train/loss_vae_KL', loss_vae_kl, it)
writer.add_scalar('train/lr', optimizer_global.param_groups[0]['lr'], it)
writer.add_scalar('train/grad_norm', orig_grad_norm, it)
writer.flush()
def validate(it):
sum_loss, sum_n = 0, 0
sum_loss, sum_n = 0, 0
sum_loss_pos_global, sum_loss_pos_local = 0, 0
sum_loss_node_global, sum_loss_node_local = 0, 0
with torch.no_grad():
model.eval()
for batch in tqdm(val_loader, desc='Validation'):
batch = batch.to(local_rank)
if len(args.context) > 0:
context = prepare_context(args.context, batch, property_norms_val)
else:
context = None
loss = model(
batch,
context=context,
return_unreduced_loss=True
)
if config.model.vae_context:
loss, loss_pos_global, loss_pos_local, loss_node_global, loss_node_local, loss_vae_kl = loss
loss_vae_kl = loss_vae_kl.mean().item()
else:
loss, loss_pos_global, loss_pos_local, loss_node_global, loss_node_local = loss
# print(loss)
sum_loss += loss.sum().item()
sum_n += loss.size(0)
sum_loss_pos_global += loss_pos_global.mean().item()
sum_loss_node_global += loss_node_global.mean().item()
sum_loss_pos_local += loss_pos_local.mean().item()
sum_loss_node_local += loss_node_local.mean().item()
avg_loss = sum_loss / sum_n
avg_loss_pos_global = sum_loss_pos_global / sum_n
avg_loss_node_global = sum_loss_node_global / sum_n
avg_loss_pos_local = sum_loss_pos_local / sum_n
avg_loss_node_local = sum_loss_node_local / sum_n
if config.train.scheduler.type == 'plateau':
scheduler_global.step(avg_loss_pos_global + avg_loss_node_global)
scheduler_local.step(avg_loss_pos_local + avg_loss_node_local)
else:
scheduler_global.step()
if 'global' not in config.model.network:
scheduler_local.step()
if dist.get_rank() == 0:
logger.info('[Validate] Iter %05d | Loss %.6f ' % (
it, avg_loss
))
writer.add_scalar('val/loss', avg_loss, it)
writer.flush()
return avg_loss
# ------------------------------------------------------------------------------
# Training file in ddp mode
# ------------------------------------------------------------------------------
if __name__ == '__main__':
parser.add_argument("--local_rank", default=-1, type=int)
args = parser.parse_args()
args.cuda = args.cuda and torch.cuda.is_available()
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
device = torch.device("cuda", local_rank)
args.dataset = 'qm9' if 'qm9' in args.config else 'geom'
resume = os.path.isdir(args.config)
if resume:
config_path = glob(os.path.join(args.config, '*.yml'))[0]
resume_from = args.config
else:
config_path = args.config
with open(config_path, 'r') as f:
config = EasyDict(yaml.safe_load(f))
# config_name = os.path.basename(config_path)[:os.path.basename(config_path).rfind('.')]
config_name = '%s_full_ddpm_2losses' % args.dataset # 'qm9_full_temb_charge_norm_edmdataset' # log name
seed_all(config.train.seed)
if resume:
log_dir = get_new_log_dir(args.logdir, prefix=config_name, tag='resume')
os.symlink(os.path.realpath(resume_from), os.path.join(log_dir, os.path.basename(resume_from.rstrip("/"))))
else:
log_dir = get_new_log_dir(args.logdir, prefix=config_name)
if not os.path.exists(os.path.join(log_dir, 'models')):
shutil.copytree('./models', os.path.join(log_dir, 'models'), dirs_exist_ok=True)
ckpt_dir = os.path.join(log_dir, 'checkpoints')
os.makedirs(ckpt_dir, exist_ok=True)
logger = get_logger('train', log_dir)
# Logging
if dist.get_rank() == 0:
writer = torch.utils.tensorboard.SummaryWriter(log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(config_path, os.path.join(log_dir, os.path.basename(config_path)))
shutil.copyfile('./train_full.py', os.path.join(log_dir, 'train_full.py'))
# Datasets and loaders
logger.info('Loading %s datasets...' % (args.dataset))
dataset_info = get_dataset_info(args.dataset, remove_h=False)
transforms = Compose([CountNodesPerGraph(), GetAdj(), AtomFeat(dataset_info['atom_index'])])
# train_set = ConformationDataset(config.dataset.train, transform=transforms)
if args.dataset == 'qm9':
train_set = QM93D('train', pre_transform=transforms)
val_set = QM93D('valid', pre_transform=transforms)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_set, shuffle=False)
val_loader = DataLoader(val_set, config.train.batch_size, sampler=val_sampler)
elif args.dataset == 'geom':
train_set = Geom(pre_transform=transforms)
else:
raise Exception('Wrong dataset name')
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True)
train_loader = DataLoader(train_set, config.train.batch_size, sampler=train_sampler)
# if context
# args.context = ['alpha']
if len(args.context) > 0:
print(f'Conditioning on {args.context}')
property_norms = compute_mean_mad(train_set, args.context, args.dataset)
property_norms_val = compute_mean_mad(val_set, args.context, args.dataset)
else:
property_norms = None
context = None
# Model
if dist.get_rank() == 0:
logger.info('Building model...')
config.model.context = args.context
config.model.num_atom = len(dataset_info['atom_decoder']) + 1
model = get_model(config.model).to(local_rank)
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
# Optimizer
optimizer_global = get_optimizer(config.train.optimizer, model.module.model_global)
scheduler_global = get_scheduler(config.train.scheduler, optimizer_global)
optimizer_local = get_optimizer(config.train.optimizer, model.module.model_local)
scheduler_local = get_scheduler(config.train.scheduler, optimizer_local)
start_iter = 0
# Resume from checkpoint
if resume:
ckpt_path, start_iter = get_checkpoint_path(os.path.join(resume_from, 'checkpoints'), it=args.resume_iter)
logger.info('Resuming from: %s' % ckpt_path)
logger.info('Iteration: %d' % start_iter)
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['model'])
optimizer_global.load_state_dict(ckpt['optimizer_global'])
optimizer_local.load_state_dict(ckpt['optimizer_local'])
scheduler_global.load_state_dict(ckpt['scheduler_global'])
scheduler_local.load_state_dict(ckpt['scheduler_local'])
best_val_loss = float('inf')
for it in range(start_iter, config.train.max_iters + 1):
start_time = time.time()
train(it)
end_time = (time.time() - start_time)
if dist.get_rank() == 0:
print('each iteration requires {} s'.format(end_time))
avg_val_loss = validate(it)
if it % config.train.val_freq == 0:
if avg_val_loss < best_val_loss:
ckpt_path = os.path.join(ckpt_dir, '%d.pt' % it)
torch.save({
'config': config,
'model': model.module.state_dict(),
'optimizer_global': optimizer_global.state_dict(),
'scheduler_global': scheduler_global.state_dict(),
'optimizer_local': optimizer_local.state_dict(),
'scheduler_local': scheduler_local.state_dict(),
'iteration': it,
'avg_val_loss': avg_val_loss,
}, ckpt_path)
print('Successfully saved the model!')
best_val_loss = avg_val_loss